资源生态

大香格里拉地区植被空间分布的环境特征

展开
  • 中国科学院 地理科学与资源研究所 资源环境与信息系统国家重点实验室,北京 100101
李亚飞(1983- ),男,河南义马人,博士研究生,主要从事遥感和景观模型研究。E-mail:liyf@lreis.ac.cn

收稿日期: 2010-12-24

  修回日期: 2011-04-09

  网络出版日期: 2011-08-20

基金资助

国家科技基础工作专项项目计划(2008FY110300):澜沧江中下游与大香格里拉地区科学考察资助

Environmental Characteristics of Vegetation Spatial Distribution in Grand Shangri-la Region

Expand
  • Institute of Geographic Sciences and Natural Resources Research, CAS, State Key Laboratory of Resource and Environmental Information System, Beijing 100101, China

Received date: 2010-12-24

  Revised date: 2011-04-09

  Online published: 2011-08-20

摘要

以植被种类丰富的大香格里拉地区为研究区,利用气象站点数据、数字高程数据(DEM)以及该地区植被分布图,通过最大熵模型(Maxent)和ArcGIS软件的空间分析功能,研究该地区典型植被空间分布的环境特征,分析了大香格里拉地区植被分布的气候特征和地形特征,量化了植被空间分布的气候范围,并根据二者的关系特征,得到了植被与气候因子关系模型。同时,界定了不同植被分布的海拔、坡度、坡向范围。发现大香格里拉地区影响不同植被空间分布的气候因子不同,影响草甸分布的是多年平均最低气温和多年7月平均气温,影响针叶林分布的是多年平均最低气温和多年平均日照时数,影响灌丛分布的较分散。同时不同植被的海拔分布界限和坡度不同,坡向对植被分布的影响不明显。研究结果可为该地区植被保护和管理,以及植被的气候变化响应提供基础参考。

本文引用格式

李亚飞, 刘高焕 . 大香格里拉地区植被空间分布的环境特征[J]. 自然资源学报, 2011 , 26(8) : 1353 -1363 . DOI: 10.11849/zrzyxb.2011.08.020

Abstract

Environmental characteristics affect spatial distribution of the vegetation profoundly. The researches of regional environmental characteristics of vegetation are very significant to the protection and management of local vegetation diversity. On the basis of these researches, further researches on vegetation response to climate changes can also be completed. In this paper, we chose the Grand Shangri-la as a research area to study the relationships between local typical vegetation distribution and their environmental characteristics through Maxent model and ArcGIS spatial analysis, using the climate stations data, DEM and vegetation distribution map in this area. Then, climate and terrain characteristics of typical vegetation distribution could be acquired in this area, quantifying evaluation of the relationships between the distributions of vegetation and their habitat, relational model between vegetation and climate factors were analyzed on the basis of their statistical relation characteristics. At the same time, elevation, slope and aspect boundaries of different vegetation distributions were quantitatively defined. In the region, different vegetation distributions were affected by different climate factors. Meadows distribution was affected by annual average lowest temperature and annual average July temperature; coniferous forest distribution was affected by annual average lowest temperatures and sunshine duration; shrub distribution was affected by annual average sunshine duration and July temperature; cultural vegetation distribution was affected by annual average May to October precipitation and annual average July temperature. At the same time, these vegetations showed the different elevation and gradient distribution characteristics. 90% of the meadows concentrated within the range of 3740 m to 5000 m in elevation.90% of the coniferous forest concentrated within the range of 1796 m to 4484 m. Cultural vegetation concentrated within the range of 1000 m to 2784 m. 80% of the shrubs concentrated within the range of 3000 m to 5000 m. In different gradient, vegetation distributions were not the same. 95% of the meadows were distributed in the range of less than 40 degrees. 95% of the coniferous forests were distributed in the range of less than 45 degrees. More than 90% of the cultural vegetation were distributed in the range of less than 35 degrees. About 90% of the shrubs were distributed in the range of 6 degrees to 37 degrees. In this area, vegetation distributions didn't show the typical aspect characteristic. In different aspects, the ratio of vegetation distribution was exactly similar. The results from the above analysis provided the reference for vegetation diversity protection, vegetation management and vegetation response to climate change.

参考文献

[1] Antoine Guisan, Niklaus E Zimmenrmann. Predictive habitat distribution models in ecology [J]. Ecological Modeling, 2000, 135: 297-313. [2] IPCC. Climate Change 2007.The Physical Basis Climate [M]. Cambridege University Press, 2007. [3] 王国宏,杨利民.祁连山北坡中段森林植被梯度分析及环境解释[J].植物生态学报,2001,25(6):733-740. [4] 张元明,陈亚宁,张道远.塔里木河中游植物群落与环境因子的关系[J].地理学报,2003,58(1):104-118. [5] 张文辉,卢涛,马克明,等.岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报,2004,24(3): 552-559. [6] 张江英,周华荣,高梅.白杨河-艾里克湖湿地及周边植物群落与环境因子的关系[J].干旱区地理,2007,30(1): 101-107. [7] Sandra D, Marcelo C, Fernado C. Plant functional traits and environmental filters at a regional scale [J]. Journal of Vegetation Science, 1998, 9: 113-122. [8] Legendre P, FortinM J. Spatial pattern and ecological analysis [J]. Vegetatio,1989,80:107-138. [9] Dickmann M, Eilertsen O, Fremstad E, et al. Beech forest communities in the Nordic countries a multivariate analysis [J]. Plant Ecology,1999,140:203-220. [10] Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation [J]. Ecology,1992, 73: 1045-1055. [11] Abd EL-Ghani M M. Vegetation composition of Egyptian inland salt marshes [J]. Botanical Bulletin of Academia Silica, 2000, 41: 305-314. [12] 梁存柱,朱宗元,王炜,等.贺兰山植物群落多样性及其空间分异[J].植物生态学报,2004,28(3):361-368. [13] 袁秀,李景文,李俊清.长城北京段风景区植被特征及植物多样性[J].生态学报,2007,27(3):977-988. [14] 张元明,曹同,潘伯荣.新疆博格达山地面苔藓植被的数量分类与排序研究[J].植物生态学报,2002,26(1):10-16. [15] 吴彦,Onipchenko V G. 雪被对川西高山植被坡向分异的影响[J].生态学报,2007,27(12):5120-5129. [16] Jayne's E T. Information theory and statistical mechanics [J]. Physical Review,1957,106:620-630. [17] Phillips S T, Anderson R P, Schapire R E. A maximum entropy approach to species distribution modeling //Proceedings of the 21st International Conference on Machine Learning. Banff, Canada, 2004: 472-486. [18] Phillips S T, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions [J]. Ecological Modelling,2006,190(34):231-259. [19] Phillips S J, Dudik M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation [J]. Ecography,2008,31(2):161-175. [20] 王运生,谢丙炎,万方浩,等. ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007,15(4):365-372. [21] 曾辉,黄冠胜,林伟,等.利用MaxEnt预测橡胶南美叶疫病菌在全球的潜在地理分布[J].植物保护,2008,34(3):88- 92. [22] 赵传燕,别强,彭焕华.祁连山北坡青海云杉林生境特征分析[J].地理学报,2010,65(1):113-121. [23] 徐柯健,张百平.大香格里拉地区自然与文化多样性[J].山地学报,2008,26(2):212-217. [24] 中国科学院《中国植被图》编辑委员会.中华人民共和国植被图(1 :100万)[M].北京: 地质出版社,2007. [25] Hijmans R J ,Cameron S E ,Parra J L, et al . Very high resolution interpolated climate surfaces for global land areas [J]. International Journal of Climatology,2005,25:1965-1978. [26] Hutchinson M F. The application of thin plate splines to continent wide data assimilation. Data Assimilation Systems, BMRC Research Report No.27. Melbourne: Bureau of Meteorology,1991:104-113. [27] 蔡福,于慧波,娇玲玲,等.降水要素空间插值精度的比较——以东北地区为例[J].资源科学,2006,28(6):73-79.
文章导航

/