基于目前大多数干旱研究偏于气象、水文和农业干旱,不能较好地反映供求矛盾,论文根据水资源供需成因的旱情评价方法,对安徽省2001—2005年的旱情时空分布进行了综合分析。研究发现,在时间上,安徽省2001和2005两年同为中度干旱,但差别甚大,平水年份的2005年的旱情等级数(Drought Index,DI)(1.485 9)却远高于偏枯的2001年(DI 0.890 9);在空间上,平水年份的2005年总体为中度干旱,但各地市区域差异明显,经济发展水平较高、用水量大的城市干旱严重(如合肥、淮南、马鞍山、芜湖市等)。淮北(DI -0.146 1,无旱)与芜湖(DI 2.466 2,严重干旱)两市水资源自然量和人口数量都相当,但旱情迥异。研究发现,造成上述旱情差异的根本原因是由于社会经济发展水平的差异而引起的水资源供需量的巨大差别。研究认为,在现代的社会背景下,单独的气象干旱、农业干旱和水文干旱已不能全面反映旱情状况,而社会经济干旱对旱情的描述更为直观,采用水资源供需平衡机制对旱情的评价也更符合实际。
Most drought studies are somewhat based on meteorological drought, hydrological drought and agricultural drought, then they can't reflect the contradiction between supply and demand better. According to the method of water supply and demand causing droughts, this paper studies the droughts of temporal and spatial distribution of Anhui Province from 2001 to 2005. It is concluded that the two years of 2001 and 2005 are the moderate level of drought, but the difference is very large. The drought index of 2005(DI 1.4859) that the river flow is normal is higher than the 2001 (DI 0.8909)that the flow is lower. On the whole, the drought of Anhui Province is moderate in 2005, but the regional difference is significant between cities. The cities with higher level of economic development and larger water resources consumption witness severe drought especially(such as Hefei,Huainan, Ma'anshan and Wuhu). Huaibei (DI -0.1461,no drought) and Wuhu(DI 2.4662,severe drought), with almost the same population and natural water resources quantity, have obviously different drought indexes. It is further found that the GDP differs one time between the two cities. It is concluded that the basic reason is the great different socio-economic development leading to different amount in water supply and demand. It is considered that the meteorological drought, agricultural drought and hydrological drought singly can't reflect the drought condition while socio-economic drought becomes more intuitive for the drought description. Using the method of water supply and demand balance mechanism for drought evaluation is more paractical in modern society.
[1] World Meteorologic Organization. International Meteorological Vocabulary . 2nd Edi., WMO, 1992: 182-784.
[2] Palmer W C. Meteorological drought . US Weather Bureau Research Paper, 1965: 45-58.
[3] 张景书. 干旱的定义与逻辑分析[J]. 干旱地区农业研究, 1993, 11(3): 97-100.
[4] American Meteorological Society. Meteorological drought—Policy statement [J]. Bulletin of American Meteorological Society, 1997, 78: 847-849.
[5] John Kryantash, John A Dracup. 干旱的定量化研究:干旱指数的评价[J]. 干旱气象, 2005, 23(2): 85-93.
[6] 陈南祥, 杨莉, 邵玉冰. 灰色系统理论在区域干旱程度评价中的应用[J]. 灌溉排水学报, 2006(1): 26-29.
[7] 罗培. 基于GIS的重庆市干旱灾害风险评估与区划[J]. 中国农业气象, 2007, 28(1): 100-104.
[8] 孙立堂, 夏祥哲, 张丽静, 等. 基于学习向量量化神经网络的农业干旱综合指标分析[J]. 水利与建筑工程学报, 2006, 4(4): 78-80.
[9] 刘晓宁, 贾忠华. 模糊综合评价在关中灌区干旱评价中的应用[J]. 水资源与水工程学报, 2005, 16(2): 62-65.
[10] 顾颖, 倪深海, 王会容. 中国农业抗旱能力综合评价[J]. 水科学进展, 2005, 16(5): 700-704.
[11] 张叶, 罗怀良. 农业气象干旱指标研究综述[J]. 资源开发与市场, 2006, 22(1): 50-52.
[12] 刘晓英, 郝卫平, 张健. 农田尺度下干旱指标及应用[J]. 中国农业气象, 2005, 26(2): 99-105.
[13] 何艳芬, 张柏, 马超群. 基于GIS的松嫩平原农业干旱敏感性分析[J]. 农业系统科学与综合研究, 2004, 20(2): 291-293.
[14] 曹升乐, 王旭峰. 基于供需成因分析和供需水量平衡的旱情评价方法研究[J]. 水文, 2006, 26(2): 6-8.
[15] 田红, 徐敏, 李树, 等. 安徽省伏旱特征及预报研究[J]. 高原气象, 2006, 25(4): 731-736.
[16] 盛绍学, 胡雯, 马晓群, 等. 安徽省农业干旱遥感监测指标的确定及应用[J]. 中国农业气象, 2001, 20(4): 36-39
[17] 盛绍学, 马晓群, 荀尚培, 等. 基于GIS的安徽省干旱遥感监测与评估研究[J]. 自然灾害学报, 2003, 12(1): 151-157.
[18] 马晓群, 盛绍学, 张爱民. 降水对安徽省长江以北地区旱情演变趋势的影响[J]. 中国农业气象, 2001, 22(3): 15-19.
[19] 吴忠莲, 赵家良. 安徽省淮北地区井灌建设问题商榷[J]. 地下水, 2002, 24(4): 238-239.
[20] 凌红波, 徐海量, 乔木, 等. 基于AHP和模糊综合评判的玛纳斯河流域水资源安全评价[J]. 中国沙漠, 2010, 30(4): 989-994.
[21] BAO Chao, FANG Chuang-lin. Integrated assessment model of water resources constraint intensity on urbanization in arid area [J]. Journal of Geographical Sciences, 2009, 19(3): 5-9.