资源评价

基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例

展开
  • 南京农业大学 公共管理学院,南京 210095
卢娜(1982- ),女,河北正定人,博士研究生,主要研究方向为资源经济与可持续发展。E-mail: lunaluckyforever@163.com

收稿日期: 2010-09-12

  修回日期: 2010-11-20

  网络出版日期: 2011-05-20

基金资助

国家自然科学基金重点项目"农村发展中生态环境管理研究"(70833001);江苏省"青蓝工程"资助。

Trends and Determining Factors of Energy Consumption Carbon Footprint —An Analysis for Suzhou-Wuxi-Changzhou Region Based on STIRPAT Model

Expand
  • College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2010-09-12

  Revised date: 2010-11-20

  Online published: 2011-05-20

摘要

定量研究经济社会发展对地区能源消费碳足迹的影响对区域实现低碳发展具有重要意义。论文计算了江苏省苏锡常地区1991—2008年能源消费碳足迹,采用岭回归函数对STIRPAT模型进行了拟合,采用脱钩指数分析了经济发展与能源消费碳足迹之间的关系。结果表明:①1991—2008年能源消费碳足迹平均增长速度为15.30%,能源消费碳足迹分配率以煤炭为主,石油所占比例呈波动下降趋势,天然气所占比例上升较快,能源消费碳足迹产值总体呈波动下降趋势;②经济增长是能源消费碳足迹的主要影响因素,两者关系模型拟合未出现环境库兹涅茨曲线;③经济增长与能源消费碳足迹之间处于相对脱钩与复钩的波动状态,从另一侧面验证了目前两者之间不存在库兹涅茨曲线假说的结论。

本文引用格式

卢娜, 曲福田, 冯淑怡, 邵雪兰 . 基于STIRPAT模型的能源消费碳足迹变化及影响因素——以江苏省苏锡常地区为例[J]. 自然资源学报, 2011 , 26(5) : 814 -824 . DOI: 10.11849/zrzyxb.2011.05.009

Abstract

Improving the understanding of the impact of socio-economic development on energy consumption carbon footprint is of great importance for developing low-carbon economy. This paper calculated and analyzed the trend of energy consumption carbon footprint of Suzhou-Wuxi-Changzhou region during the period of 1991—2008. Applying ridge regression method, the STIRPAT model was estimated to explore the relationships between population, per capita GDP, technological development and energy consumption carbon footprint. The decoupling index was adopted to further analyze the relationship between economic growth and energy consumption carbon footprint. Results indicated that: 1) For Suzhou-Wuxi-Changzhou region, energy consumption carbon footprint has increased from 0.05 hm2 per capita in 1991 to 0.58 hm2 per capita in 2008. The annual average increasing rate was 15.30%. Coal consumption accounted for the largest share in energy consumption carbon footprint. The share in 2008 was 96.18%. Petroleum consumption fluctuated and showed a downward trend, the share decreased from 18.71% to 3.42% from 1991 to 2008. Different from petroleum, natural gas consumption rose very fast. Even though the share was only 0.40% in 2008, the annual average increasing rate was 45.40% since the extension of natural gas in 2002. The value of carbon footprint showed an overall fluctuating downward tendency, indicating a large space for energy efficiency improvement. 2) Economic development was the main driving factor for energy consumption carbon footprint. 1% increase of per capita GDP has resulted in 0.73% increase in energy consumption carbon footprint. The relationship between per capita GDP and energy consumption carbon footprint, however, did not prove the environmental Kuznets curve (EKC), indicating that with the socio-economic development, environmental pressure caused by energy consumption will continuously increasing. 3) The decoupling index was fluctuating, either in the state of relative decoupling or in re-coupling, indicating that economic growth was highly dependent on energy consumption, and verifying that EKC hypothesis does not exist. Compared with Suzhou and Wuxi, Changzhou has displayed a decoupling state between economic growth and energy consumption carbon footprint since 1998.

参考文献

[1] 政府间气候变化专门委员会. 气候变化2007综合报告. http://www.ipcc.cn/, 2010-05-18. [IPCC. Climate Change 2007 Synthesis Report. http://www.ipcc.cn/, 2010-05-18.] [2] 国家发展和改革委员会能源研究所课题组. 中国2050年低碳发展之路: 能源需求曁碳排放情景分析[M]. 北京: 科学出版社, 2009. [3] Holtz-Eakin D, Selden T M. Stoking the fires? CO2 emissions and economic growth [J]. Journal of Public Economics, 1995, 57: 85-101. [4] Panayotou T, Sachs J, Peterson A. Developing countries and the control of climate change: A theoretical perspective and policy implications . CAER Ⅱ Discussion Paper, 1999, No. 44. [5] Galeotti M, Lanza A, Pauli F. Reassessing the environmental Kuznets Curve for CO2 Emissions: A robustness exercise [J]. Ecological Economics, 2006, 57: 152-163. [6] 杜婷婷, 毛峰, 罗瑞. 中国经济增长与CO2排放演化探析[J]. 中国人口·资源与环境, 2007, 17(2): 94-99. [7] 林伯强, 蒋竺均. 中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J]. 管理世界, 2009(4): 27-36. [8] 徐国泉, 刘则渊, 姜照华. 中国碳排放的因素分解模型及实证分析: 1995—2004[J]. 中国人口·资源与环境, 2006, 16(6): 158-161. [9] 张雷. 中国一次能源消费的碳排放区域格局变化[J]. 地理研究, 2006, 25(1): 1-9. [10] 刘慧, 成升魁, 张雷. 人类经济活动影响碳排放的国际研究动态[J]. 地理科学进展, 2002, 21(5): 420-429. [11] 无锡统计局. 无锡统计年鉴[M]. 北京: 中国统计出版社, 1991—2009. [12] 苏州市统计局. 苏州统计年鉴[M]. 北京: 中国统计出版社, 1991—2009. [13] 常州市统计局. 常州统计年鉴[M]. 北京: 中国统计出版社, 1991—2009. [14] 国家统计局能源统计司, 国家能源局综合司. 中国能源统计年鉴2008[M]. 北京: 中国统计出版社, 2008. [15] 中国生态足迹报告. http://www.wwfchina.org/wwfpress/publication/policy/Cecofootprint.pdf, 2010-05-18. [Report of ecological footprint of China. http://www.wwfchina.org/wwfpress/publication/policy/Cecofootprint.pdf, 2010-05-18.] [16] York R, Rosa E A, Dietz T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts [J]. Ecological Economics, 2003, 23: 351-365. [17] 徐中民,程国栋. 中国人口和富裕对环境的影响[J]. 冰川冻土, 2005, 27(5): 767-773. [18] 龙爱华, 徐中民, 王新华, 等. 人口、富裕及技术对2000年中国水足迹的影响[J]. 生态学报, 2006, 26(10): 3358-3365. [19] 王琳, 吴业, 杨桂山, 等. 基于STIRPAT模型的耕地面积变化及其影响因素[J]. 农业工程学报, 2008, 24(12): 196-200. [20] 王立猛, 何康林. 基于STIRPAT模型的环境压力空间差异分析——以能源消费为例[J]. 环境科学学报, 2008, 28(5): 1032-1037. [21] 林毅夫. 制度、 技术与中国农业发展[M]. 上海: 上海人民出版社, 1995. [22] 李效顺, 曲福田, 郭忠兴, 等. 城乡建设用地变化的脱钩研究[J]. 中国人口·资源与环境, 2008, 18(5): 179-184. [23] OECD. Decoupling: A conceptual overview . Paris: OECD, 2001. [24] 邓华, 段宁. "脱钩"评价模式及其对循环经济的影响[J]. 中国人口·资源与环境, 2004, 14(6): 44-47. [25] 赵一平, 孙启宏, 段宁. 中国经济发展与能源消费响应关系研究: 基于相对"脱钩"与"复钩"理论的实证研究[J]. 科研管理, 2006, 27(3): 128-134. [26] 钟太洋, 黄贤金, 王柏源. 经济增长与建设用地扩张的脱钩分析[J]. 自然资源学报, 2010, 25(1): 18-31. [27] 王崇梅. 中国经济增长与能源消耗脱钩分析[J]. 中国人口·资源与环境, 2010, 20(3): 35-37.
文章导航

/