资源生态

陕北水蚀风蚀交错区生物结皮对土壤酶活性及养分含量的影响

展开
  • 1. 西北农林科技大学 资源环境学院, 陕西 杨凌 712100;
    2. 中国科学院、水利部 水土保持研究所, 陕西 杨凌 712100
孟杰(1985- ),男,陕西城固人,在读硕士,主要从事水土保持与环境生物资源利用方面的研究。E-mail:mengjie2008@nwsuaf.edu.cn

收稿日期: 2010-04-03

  修回日期: 2010-07-06

  网络出版日期: 2010-11-20

基金资助

国家自然科学基金(40701096);中国科学院西部之光(B28013200);陕西省自然科学基金(SJ08D07)。

Effects of Biological Soil Crust on Soil Enzyme Activities and Nutrients Content in Wind-water Erosion Crisscross Region, Northern Shaanxi Province, China

Expand
  • 1. College of Resources and Environment, Northwest A &F University, Yangling 712100, China;
    2. Institute of Soil and Water Conservation, CAS and Ministry of Water Resources, Yangling 712100, China

Received date: 2010-04-03

  Revised date: 2010-07-06

  Online published: 2010-11-20

摘要

论文以陕北水蚀风蚀交错区六道沟小流域的生物结皮为对象,研究分析了其对土壤酶活性和土壤养分特征的影响。结果表明:生物结皮对土壤酶活性和土壤养分的影响主要体现在结皮层。结皮层的土壤脲酶和过氧化氢酶活性分别为下层(0~2 cm)土壤的1.56和1.31倍,碱性磷酸酶活性提高幅度最大,为结皮下层的3.72倍;生物结皮能显著提高结皮层土壤有机质、全氮及速效氮含量(P<0.05),研究中结皮层土壤有机质、全氮、速效氮含量分别为15.67 g·kg-1、0.65 g·kg-1和22.51 mg·kg-1,而其下0~2 cm层土壤则分别为5.54 g·kg-1、0.30 g·kg-1和14.6 mg·kg-1;生物结皮对土壤速效磷和速效钾的影响不明显(P>0.05);生物结皮层土壤pH值为8.08,低于其下0~2 cm层土壤(pH值为8.32,P<0.05)。总之,生物结皮的形成和发育可以改善表层土壤的生物化学性质,对该区植被的恢复与重建具有积极意义。

本文引用格式

孟杰, 卜崇峰, 赵玉娇, 张兴昌 . 陕北水蚀风蚀交错区生物结皮对土壤酶活性及养分含量的影响[J]. 自然资源学报, 2010 , 25(11) : 1864 -1874 . DOI: 10.11849/zrzyxb.2010.11.006

Abstract

Biological soil crust (BSC) exerts important ecological functions in the arid and semi-arid ecosystems. In this paper, the effects of BSC on soil enzyme (urease, catalase and alkaline phosphatase) activities and nutrients (soil organic matter, total N, available N, P and K) content were studied in the revegetated lands in the water-wind erosion crisscross region on the Loess Plateau, northern Shaanxi Province of China. The results indicated that compared to no crust, BSC could significantly improve soil enzyme activities in crust,but had no significant increase effect on soil enzyme activities in subsoil. The activities of soil urease and catalase in crust layer were 1.56 and 1.31 times as high as that in 0-2 cm topsoil under crust, respectively. The increasing extent of soil alkaline phosphatase activity in crust was the biggest, which was 3.72 times of that in 0-2 cm topsoil under crust. Soil nutrients accumulation effects of BSC were obvious mainly in crust soil. In this study, BSC significantly increased the content of soil organic matter, total N and available N in crust (P<0.05),but the increase effects of available P and K were not significant (P>0.05). The contents of soil organic matter, total N and available N were 15.67 g·kg-1, 0.65 g·kg-1 and 22.51 mg·kg-1 in crust, and were 5.54 g·kg-1, 0.30 g·kg-1 and 14.6 mg·kg-1 in 0-2 cm topsoil under crust, respectively. The soil pH was 8.08 in crust, which was lower than that in 0-2 cm topsoil under crust (pH=8.32, P<0.05). The decrease effect of BSC on soil pH was helpful to improve the soil nutrients bioavailability. Therefore, it can be concluded that the formation and development of BSC would be beneficial to bettering surface soil biochemical properties, which can promote vegetation restoration and reconstruction in such arid and semiarid regions. There were many factors which influenced the formation and development of BSC. Therefore, effects of BSC on soil enzyme activities and nutrients under different environmental conditions and various vegetation types should be paid more attention in the further studies.

参考文献

[1] Belnap J, Lange O L. Biological Soil Crusts: Structure, Function and Management [M]. Germany, Berlin: Springer-Verlag, 2001. [2] Rivera-Aguilar V, Montejano G, Rodríguez-Zaragoza S, et al. Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the Tehuacán Valley, Puebla, México [J]. Journal of Arid Environments, 2006, 67: 208-225. [3] 张元明, 陈晋, 王雪芹, 等. 古尔班通古特沙漠生物结皮的分布特征[J]. 地理学报, 2005, 60(1): 53-60. [4] 徐杰, 白学良, 杨持, 等. 固定沙丘结皮层藓类植物多样性及固沙作用研究[J]. 植物生态学报, 2003, 27(4): 545-551. [5] Ram A, Aaron Y. Negative and positive effects of topsoil biological crusts on water availability along a rainfall gradient in a sandy arid area [J]. Catena, 2007, 70: 437-442. [6] Carmi G, Berliner P. The effect of soil crust on the generation of runoff on small plots in an arid environment [J]. Catena, 2008, 74: 37-42. [7] 刘立超, 李守中, 宋耀选, 等. 沙坡头人工植被区微生物结皮对地表蒸发影响的试验研究[J]. 中国沙漠, 2005, 25(2): 191-195. [8] 王雪芹, 张元明, 张伟民, 等. 古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J]. 冰川冻土, 2004, 26(5): 632-638. [9] 郭轶瑞, 赵哈林, 赵学勇, 等. 科尔沁沙地结皮发育对土壤理化性质影响的研究[J]. 水土保持学报, 2007, 21(1): 135-139. [10] 赵哈林, 郭轶瑞, 周瑞莲, 等. 人工林建设对沙地土壤结皮发育及其表土理化特性的影响[J]. 水土保持学报, 2010, 24(1): 202-207. [11] 苏延桂, 李新荣, 贾荣亮, 等. 腾格里沙漠东南缘苔藓结皮对荒漠土壤种子库的影响[J]. 应用生态学报, 2007, 18(3): 504-508. [12] 陈荣毅, 魏文寿, 张元明, 等. 干旱区生物土壤结皮对种子植物多样性的影响[J]. 中国沙漠, 2008, 28(5): 868-873. [13] 李新荣, 肖洪浪, 刘立超, 等. 腾格里沙漠沙坡头地区固沙植被对生物多样性恢复的长期影响[J]. 中国沙漠, 2005, 25(2): 173-181. [14] 陈进福, 李新荣, 陈应武, 等. 生物土壤结皮对荒漠昆虫多样性的影响[J]. 中国沙漠, 2006, 26(6): 986-996. [15] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [16] 董莉丽, 郑粉莉. 黄土丘陵区不同土地利用类型下土壤酶活性和养分特征[J]. 生态环境, 2008, 17(5): 2050-2058. [17] 王兵, 刘国彬, 薛萐, 等. 黄土丘陵区撂荒对土壤酶活性的影响[J]. 草地学报, 2009, 17(3): 282-287. [18] 张元明, 杨维康, 王雪芹, 等. 生物结皮影响下的土壤有机质分异特征[J]. 生态学报, 2005, 25(12): 3420-3425. [19] 陈祝春. 不同地带沙丘结皮层的土壤酶活性[J]. 中国沙漠, 1989, 9(1): 85-92. [20] 齐雁冰, 常庆瑞, 惠泱河. 高寒地区人工植被恢复过程中沙表生物结皮特性研究[J]. 干旱地区农业研究, 2006, 24(6): 98-102. [21] 赵吉, 邵玉琴. 库布齐沙地土壤的生物学活性研究[J]. 内蒙古大学学报: 自然科学版, 1997, 28(5): 664-666. [22] 王素娟, 高丽, 苏和, 等. 内蒙古库布齐沙地土壤蛋白酶初步研究[J]. 草业科学, 2009, 26(9): 13-17. [23] 唐克丽. 黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J]. 中国水土保持, 2000(11): 11-17. [24] 肖波, 赵允格, 邵明安. 陕北水蚀风蚀交错区两种生物结皮对土壤饱和导水率的影响[J]. 农业工程学报, 2007, 23(12): 35-40. [25] 张振国, 焦菊英, 白文娟. 黄土丘陵沟壑区退耕地植被恢复中生物土壤结皮特征[J]. 水土保持通报, 2006, 26(4): 33-37. [26] 赵允格, 许明详, 王全九, 等. 黄土丘陵区退耕地生物结皮理化性状初报[J]. 应用生态学报, 2006, 17(8): 1429-1434. [27] 赵允格, 许明详, 王全九, 等. 黄土丘陵区退耕地生物结皮对土壤理化性状的影响[J]. 自然资源学报, 2006, 21(3): 441-448. [28] 王翠萍, 廖超英, 孙长忠, 等. 黄土地表生物结皮对土壤贮水性能及水分入渗特征的影响[J]. 干旱地区农业研究, 2009, 27(4): 54-59. [29] 冉茂勇, 赵允格, 陈彦芹. 黄土丘陵水蚀区生物结皮土壤抗冲性试验研究[J]. 西北林学院学报, 2009, 24(3): 37-40. [30] 焦雯珺, 朱清科, 张宇清, 等. 陕北黄土区退耕还林地生物结皮分布及其影响因子研究[J]. 北京林业大学学报, 2007, 29(1): 102-107. [31] 张健, 刘国彬, 许明祥, 等. 黄土丘陵区影响生物结皮退化因素的初步研究[J]. 中国水土保持科学, 2008, 6(6): 14-20. [32] 吕建亮, 廖超英, 孙长忠, 等. 黄土地表藻类结皮分布影响因素研究[J]. 西北林学院学报, 2010, 25(1): 11-14. [33] 肖波, 赵允格, 邵明安. 陕北水蚀风蚀交错区两种生物结皮对土壤理化性质的影响[J]. 生态学报, 2007, 27(11): 4662-4670. [34] 肖波, 赵允格, 许明详, 等. 陕北黄土区生物结皮条件下土壤养分的积累及流失风险[J]. 应用生态学报, 2008, 19(5): 1019-1026. [35] 肖波, 赵允格, 邵明安. 黄土高原侵蚀区生物结皮的人工培育及其水土保持效应[J]. 草地学报, 2008, 16(1): 28-33. [36] 李勉, 李占斌, 刘普灵, 等. 黄土高原水蚀风蚀交错带土壤侵蚀坡向分异特征[J]. 水土保持学报, 2004, 18(1): 63-65. [37] 赵兰坡, 姜岩. 土壤磷酸酶活性测定方法的探讨[J]. 土壤通报, 1986, 17(3): 138-141. [38] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2002. [39] 周礼恺. 土壤酶学[M]. 北京: 科学出版社, 1987. [40] 安韶山, 黄懿梅, 郑粉莉. 黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J]. 草地学报, 2005, 13(3): 233-237. [41] 唐东山, 王伟波, 李敦海, 等. 人工藻结皮对库布齐沙地土壤酶活性的影响[J]. 水生生物学报, 2007, 31(3): 339-344. [42] 李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展、前沿与展望[J]. 地球科学进展, 2009, 24(1): 11-24. [43] 赵允格, 徐冯楠, 许明祥. 黄土丘陵区藓结皮生物量测定方法及其随发育年限的变化[J]. 西北植物学报, 2008, 28(6): 1228-1232. [44] Thomas A D, Dougill A J. Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa [J]. Journal of Arid Environments, 2006(64): 270-283.
文章导航

/