利用环境负荷模型与"脱钩"理论,对江苏未来中长期的经济发展、能源需求与CO2排放进行了情景分析,并结合当前的环境政策,对三种情景下主要指标的参数和结果进行了设计与分析。研究表明,资源节约型与环境友好型社会的构建,低碳情景是江苏能源-经济-社会的协调发展最合适、也是最现实的方案;通过不同情景的比较,认为低碳情景的实现一定程度上是以减缓经济增长来实现节能减排目标的;低碳情景下能源需求与CO2排放也将明显快速增加,与2007年相比,2030年能源需求总量将增加1.431倍,碳排放总量将达到15 655×104 t,未来20 a能源资源的有效供应与合理利用成为制约低碳经济发展的瓶颈因素。最后给出了实现节能减排、促进低碳经济发展的相关建议。
Mid- and long-term economic growth, energy demand and carbon emissions scenarios in Jiangsu were analyzed using the IPAT model. The main parameters and results for three scenarios are introduced, according to the current energy usage situation and environmental policy. Research results show that low carbon scenario was the most appropriate and realistic way to build the energy saving and environment-friendly society; the targets of energy-saving and carbon reduction will be reached at the expense of the economic growth; with the rapid development of economy in the future, energy demand and carbon emissions will also increase quickly; compared with 2007, energy demand may increase by 1.431 times in 2030, and the carbon emissions may increase to 156.55 million tons; and energy supply and rational utilization will be the bottleneck factors in the future 20 years. Then, several suggestions are put forward in order to deal with the pressure on the reduction of carbon emissions.
[1] 庄贵阳. 中国经济低碳发展的途径与潜力分析[J]. 国际技术经济研究, 2005, 8(3): 79-87.
[2] Weigend Andreas S. Time series analysis and prediction using gated experts with application to energy demand forecasts [J]. Applied Artificial Intelligence, 1996(11/12): 583-624.
[3] 赵媛, 梁中, 袁林旺, 等. 能源与社会经济环境协调发展的多目标决策[J]. 地理科学, 2001, 21(2): 165-168.
[4] 宁云才. 煤炭需求预测的复合小波神经网络模型[J]. 煤炭学报, 2003, 28(1): 108-112.
[5] McMenamin J S, Monforte F A. Short term energy forecasting with neural networks [J]. Energy Journal, 1998(4): 43-62.
[6] 陈卫东, 顾培亮. 能源时序相空间重构及其混沌特征分析[J]. 天津大学学报, 2002, 35(2): 293-297.
[7] Silberglitt Richard, Anders Hove, Peter Shulman. Analysis of US energy scenarios: Meta-scenarios, pathways, and policy implications [J]. Technological Forecasting & Social Change, 2003, 70(4): 297-315.
[8] Hiromi Yamamoto, Kenji Yamaji, Junichi Fujino. Scenario analysis of bioenergy resources and CO2 emissions with a global land use and energy model [J]. Applied Energy, 2000, 66(4): 325-337.
[9] Ram M Shrestha, Sunil Malla, Migara H. Liyanage, Scenario-based analyses of energy system development and its environmental implications in Thailand [J]. Energy Policy, 2007, 35(6): 3179-3193.
[10] 中国科学院可持续发展战略研究组. 探索中国特色的低碳道路[M]. 北京: 科学出版社, 2009: 132-153.
[11] Ehrlich P R, Holdrens J P. The impact of population growth [J]. Science, 1971, 171: 1212-1217.
[12] 何建坤, 张希良, 李政, 等. CO2减排情景下中国能源发展若干问题[J]. 科技导报, 2008, 26(2): 90-92.
[13] 姜克隽, 胡秀莲, 庄幸, 等. 中国2050年的能源需求与CO2排放情景[J]. 气候变化研究进展, 2008, 4(5): 296-302.