以1956—2005年降雨、径流与气象资料为基础,应用Mann-Kendall趋势检验、小波分析以及R/S分析等多种方法,探讨了东江流域径流年际变化特征及其对气候变化以及植被覆盖变化的响应。结果表明:①50 a来流域年径流序列变化趋势不明显,存在4 a、7~9 a、11~13 a、16~22 a 等4类尺度的周期性变化规律;河源、岭下站径流序列具有较强的状态持续性,博罗站持续性很小。②厄尔尼诺现象出现的当年,东江流域年径流量普遍减少;厄尔尼诺现象出现的次年,年径流量普遍增加。太阳黑子数的急剧变化,与东江径流量的丰、枯也有良好的响应关系。③50 a来,在降雨量呈不显著减少趋势的背景下,河源、岭下站径流仍然呈不显著增加趋势的主要原因是蒸发量下降的缘故,是气候因素和流域植被退化共同作用的结果。
Based on the runoff and precipitation data at Heyuan, Lingxia and Boluo sations during 1956-2005, the Mann-Kendall, Rescaled Range analysis and wavelet transform analysis methods are used to find out the variation law of runoff and its impacting factors in the Dongjiang River Basin. The results show that there are no significant changing trend and abruptly jumping point for runoff series in the Dongjiang River Basin. The results of continuous wavelet transform indicate that there are obvious periodic variations with scales 4 a, 7-9 a, 11-13 a and 16-22 a for the annual runoff series, and scale 7-9 a is the first period. The computed Hurst exponents indicate that a long-term memory characteristic exists in the annual runoff series. Annual runoff amount is related to the occurrence of El nio event. And sunspot number(SSN) is significantly correlated to annual runoff amount. The results of linear correlation indicate that the more SSN is, the less annual runoff amount is. The results of statistical analysis show that trends and abrupt change of runoff are in accordance with that of precipitation, evaporation respectively, especially with the precipitation. Among the climate factors,precipitation and evaporation are the most important factors to the changes of runoff. NDVI(Normalized Difference Vegetation Index) series in the Dongjiang River Basin show a significantly decreasing trend during 1982-2005, but NDVI series presents insignificant effect on runoff directly, which may indirectly affect runoff by impacting evaporation. Runoff variations in the Dongjiang River Basin are affected by synthetic effect of regional climatic elements and vegetation deterioration.
[1] 赵雪花, 黄强. 黄河上游径流变化的影响因素分析研究[J]. 自然科学进展, 2004, 14(6): 700-704.
[2] 曹建延, 秦大河, 罗勇, 等. 长江源区1956—2000年径流量变化分析[J]. 水科学进展, 2007, 18(1): 29-33.
[3] 王国庆, 张建云, 贺瑞敏. 环境变化对黄河中游汾河径流情势的影响研究[J]. 水科学进展, 2006, 17(6): 853-858.
[4] 丁永建, 叶柏生, 韩添丁, 等. 过去50年中国西部气候和径流变化的区域差异[J]. 中国科学D辑: 地球科学, 2007, 37(2): 206-214.
[5] 石教智, 陈晓宏, 吴甜. 东江流域降雨径流变化趋势及其原因分析[J]. 水电能源科学, 2005, 23(5): 8-11.
[6] 王兆礼, 陈晓宏, 杨涛. 东江流域博罗站天然年径流量序列多时间尺度分析[J]. 中国农村水利水电, 2010(2): 21-24.
[7] 谢平, 陈晓宏, 王兆礼, 等. 东江流域实际蒸发量与蒸发皿蒸发量的对比分析[J]. 地理学报, 2009, 64(3): 270-277.
[8] 刘德地, 陈晓宏. 东江流域降水场时空分布特征分析[J]. 水文, 2008, 28(2): 82-86.
[9] Wang W, Chen X, Shi P. Detecting changes in extreme precipitation and extreme streamflow in the Dongjiang River Basin in southern China [J]. Hydrol. Earth Syst. Sci., 2008, 12: 207-221.
[10] Global Inventory Modeling and Mapping Studies (GIMMS). Satellite drift corrected and NOAA-16 incorporated normalized difference vegetation index (NDVI), bimonthly 1981-2006 . University of Maryland Global Land Cover Facility Data Distribution, 2008.
[11] Eduardo O, Ebeling W, Lanius K. MEI, SOI and mid-range correlations in the onset of El Niňo-Southern Oscillation [J]. Physica A, 2002, 310(3/4): 509-520.
[12] 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007.
[13] Torrence C, Compo G P. A practical guide to wavelet analysis [J]. Bulletin of American Meteorological Society, 1998, 79: 61-78.
[14] Mandelbrot B B. The Geometry of Nature [M]. New York: W. H. Freeman, 1982.
[15] 燕爱玲, 黄强, 刘招. R/S法的径流时序复杂特性研究[J]. 应用科学学报, 2007, 25(2): 214-217.
[16] Rasmusson E M, Wallace J M. Meteorological aspects of El Nio/Southern Oscillation [J]. Science, 1983, 222: 1195-1202.
[17] 李崇银, 穆穆, 周广庆, 等. ENSO机理及其预测研究[J]. 大气科学, 2008, 32(4): 761-781.
[18] Prestes A, Rigozo NR, Echer E, et al. Spectral analysis of sunspot number and geomagnetic indices (1986-2001) [J]. Journal of Atmosphere and Solar-Terrestrial Physics, 2006, 68(2): 182-190.
[19] 王兆礼, 陈晓宏, 李艳. 珠江流域植被覆盖时空变化分析[J]. 生态科学, 2006, 25(4): 303-307.