资源评价

甘肃武山地热田水化学与地热水起源

展开
  • 1. 兰州大学 资源环境学院, 兰州大学 干旱区水循环与水资源研究中心, 兰州 730000;
    2. 甘肃省地矿局 第二勘察院 兰州 730020;
    3. 中国地质大学 水资源与环境学院, 北京 100083
温煜华(1981- ),女,甘肃靖远人,博士研究生,主要从事温泉旅游研究工作。

收稿日期: 2010-02-08

  修回日期: 2010-05-05

  网络出版日期: 2010-07-10

基金资助

国家自然科学基金项目(50879033)。

Hydrochemistry and Origin of the Wushan Geothermal Field, Gansu

Expand
  • 1. College of Resource and Environment Science, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 73000, China;
    2. No. 2 Geology Exploration Institute, Bureau of Geology and Mineral Resources Of Gansu Province, Lanzhou 730020, China;
    3. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China

Received date: 2010-02-08

  Revised date: 2010-05-05

  Online published: 2010-07-10

摘要

通过对武山地热田地热水和地下冷水的水化学和同位素分析,结果表明武山地热水的出露温度为18.2~42.1 ℃,TDS含量为238~255 mg/L,属于低矿化度的HCO3型水。相对于地下冷水,地热水有更高的SiO2、F含量,说明经历了比冷水更长的循环深度。水化学特征表明武山地热水为大气降水与岩石相互作用的初级阶段。武山冷水和地热水的同位素沿着西北大气降水线分布,由于地热水的水岩相互作用时间较长,有更低的δD和δ18O值,说明武山地热水是大气来源的。综合运用各种地热温标估算武山地热水的热储温度范围在70~106 ℃之间,按照甘肃东部的平均地温梯度(35 ℃/km),得出武山地热水循环深度为1.74~2.77 km,属于中低温地热系统。此研究为今后可持续开发武山地热水提供了科学依据。

本文引用格式

温煜华, 王乃昂, 朱锡芬, 张华安, 李百祥, 王 莹 . 甘肃武山地热田水化学与地热水起源[J]. 自然资源学报, 2010 , 25(7) : 1186 -1193 . DOI: 10.11849/zrzyxb.2010.07.014

Abstract

The results of the analysis of chemistry and isotope of geothermal waters and cold groundwater in Wushan geothermal field indicate that thermal waters of Wushan geothermal field have outlet temperatures of 18.2-42.1 ℃ and TDS of 238-255 mg/L, belonging to bicarbonate water of low-salinity. Compared to cold groundwater, thermal waters have higher concentration of SiO2 and F, which indicate thermal waters have experienced deeper circulation than cold groundwater. Chemical characteristics suggest that thermal waters of Wushan are typical of the first stage of interaction between meteoric water and rock. δ18O and δD values of samples close to north-west meteoric water line of China, which shows that Wushan thermal water is of meteoric origin. Thermal water has lower δD and δ18O than cold groundwater, which suggests a relatively long subsurface circulation. The temperature of geothermal reservoir of Wushan thermal waters range from 70 to 106 ℃ estimated with various chemical geothermometer, and corresponding reservoir depth is from 1.74 to 2.77 km according to average geothermal gradient of eastern Gausu of 35℃/km, thus leading to the conclusion that Wushan thermal waters belong to low-medium geothermal resource. This study provides scientific basis for sustainable exploitation of geothermal water in Wushan geothermal field.

参考文献

[1] 李泽椿, 朱蓉, 何晓风, 等. 风能资源评估技术方法研究[J]. 气象学报, 2007, 65(5): 708-717. [2] 朱蓉. 风能资源评估最新技术及进展//2008年电网与清洁能源技术论坛论文集, 2008: 60-66. [3] Bowen A J, Mortensen N G. Exploring the limits of WAsP: The wind atlas analysis and application program // Proceedings of the 1996 European Union Wind Energy Conference and Exhibition. Goteborg, Sweden, 1996: 584-587. [4] Helmut P Frank, Lars Landberg, Ole Rathmann, et al. The numerical wind atlas—The KAMM/WAsP Method . Report Riso-R-1252(EN), Riso National Laboratory, June 2001. [5] Brower M C, et al. Applications and validations of Mesomap wind mapping system in different climatic regimes //Proc. Amer. Wind Energy Assoc., Windpower 2001, June 2001. [6] Yu W, Benoit R, Girard C, et al. Wind Energy Simulation Toolkit (WEST): A wind mapping system for use by the wind energy industry [J]. Wind Engineering, 2006, 30: 15-33. [7] Atsushi Yamoguchi, Takeshi Ishihara, Yozo Fujino. An assessment of offshore wind energy potential using mesoscale model and GIS //2004 European Wind Energy Conference&Exhibition. London, U K, 2004. [8] 龚强, 袁国恩, 张云秋, 等. MM5模式在风能资源普查中的应用试验[J]. 资源科学, 2006, 28(1): 145-150. [9] 张德, 朱蓉, 罗勇, 等. 风能模拟系统WEST在中国风能数值模拟中的应用[J]. 高原气象, 2008, 27(1): 202-207. [10] 何晓凤, 周荣卫, 朱蓉. MM5与CFD软件相结合对复杂地形风资源模拟初探. 2008年全国风与大气环境学术会议, 2008. [11] 毛慧琴, 宋丽莉, 黄浩辉, 等. 广东省风能资源区划研究[J]. 自然资源学报, 2005, 20(5): 679-685. [12] Xu D, Taylor P A. A non-linear extension of mixed spectral finite-difference model for neutral stratified turbulent flow over topography [J]. Boundary-Layer Meteorology, 1992(59): 177-186. [13] Xu D, Ayotte K W, Taylor P A. Development of a non-linear mixed spectral finite difference model for turbulent boundary-layer flow over topography [J]. Boundary-Layer Meteorology, 1994(70): 341-367. [14] http: //www.infobase.gov.cn/sdgd/sda/ca3/gk/gk1.htm. [15] 王赐震, 宋西龙. 山东半岛北部沿海的海陆风[J]. 海洋学报, 1988, 10(6): 678-686. [16] 侯学煜. 1:1000000中国植被图集[M]. 北京: 科学出版社, 2001. [17] Beljaars A C M, Walmsley J L, Taylor P A. A mixed spectral finite difference model for neutrally stratified boundary-layer flow over roughness change and topography [J]. Boundary-Layer Meteorology, 1987(38): 273-303. [18] Karpik S R. An improved method for integrating the mixed spectral finite difference (MSFD) model equations [J]. Boundary-Layer Meteorology, 1998(43): 273-286. [19] Karpik S R, Walmsley J L, Weng W. The mixed spectral finite difference (MSFD) model: Improved upper boundary conditions [J]. Boundary-Layer Meteorology, 1995(75): 353-380. [20] Ayotte K W, Taylor P A. A mixed spectral finite-difference 3D Model of neutral planetary boundary-layer flow over topography [J]. Journal of the Atmospheric Sciences, 1995(52): 3523-3527. [21] Ayotte K W, Xu D, Taylor P A. The impact of turbulence closure schemes on predictions of the mixed spectral finite difference model for flow over topography [J]. Boundary-Layer Meteorology, 1994(68): 1-33. [22] 夏建新, 石雪峰, 吉祖稳, 等. 植被条件对下垫面空气动力学粗糙度影响实验研究[J]. 应用基础与工程科学学报, 2007, 15(1): 1-31. [23] 杨明元. 对地表粗糙度测定的分析与研究[J]. 中国沙漠, 1996, 16(4): 383-387. [24] 张雅静, 申向东. 植被覆盖地表空气动力学粗糙度与零平面位移高度的模拟分析[J]. 中国沙漠, 2008, 28(1): 21-26. [25] 石雪峰, 夏建新, 吉祖稳. 空气动力学粗糙度与植被特征关系的研究进展[J]. 中央民族大学学报: 自然科学版, 2006, 15(3): 218-225.
文章导航

/