推动国产遥感卫星在资源环境领域中的应用对于促进我国航天事业发展、减少科研成本具有重要意义。我国近期发射的环境减灾卫星具有时间分辨率高、可获得高光谱影像的特点,在陆地资源遥感监测领域将有广阔发展空间。研究于2009年夏季获得三景呼伦贝尔草原区遥感影像和对应地面实测草地生物量信息,基于这些数据探讨了利用环境减灾卫星多光谱影像和植被指数反演草地生物量的可行性。结果表明基于影像提取的NDVI、OSAVI、MSAVI、SAVI、EVI、MTVI2、WDRVI和GNDVI等光谱指数均与草地生物量有较好的定量关系。其中,MTVI2结果最好,预测决定系数达0.61,交叉检验决定系数为0.58,均方根误差仅为58.6 g·m-2,基于MTVI2和环境减灾卫星多光谱影像可准确生成草地生物量空间分布图。
Promoting the application of domestic remote sensing satellite in natural resources and environment monitoring is very important to accelerate the development of national space research and reduce scientific activities cost. The recent launched satellite HJ-1A/B has the characteristic of high time resolution and can acquire hyperspectral image. These make it has the prosperous future in terrestrial resources detection. In the summer of 2009, the study obtained three images and corresponding grass dry biomass in Hulunbeier area. They were used to study the feasibility of using HJ-1A/B multispectral image and spectral indices for grassland biomass prediction. The result showed image based on calculation of spectral indices, including NDVI, OSAVI, MSAVI, SAVI, EVI, MTVI2, WDRVI, GNDVI, have good relationship with grass biomass. MTVI2 gained the best result with R2 value of 0.61, meanwhile the cross validation result of it was also permissible with R2 value of 0.58 and RMSE value of 58.6 g·m-2. The map of grass biomass in the research area can be produced using MTVI2 and HJ multispectral imagery.
[1] 刘纪远. 国家资源环境遥感宏观调查与动态监测研究[J]. 遥感学报, 1997, 1(3): 225-230.
[2] 童庆禧. 遥感科学技术发展[J]. 地理学报, 1994, 49(增刊): 616-623.
[3] 陆灯盛, 游先祥. 遥感技术在资源环境中应用的现状及趋势[J]. 北京林业大学学报, 2003, 25(12): 83-88.
[4] 边多, 杜军, 胡军, 等. 1975—2006年西藏羊卓雍流域内湖泊水位变化对气候变化的响应[J]. 冰川冻土, 2009, 31(3): 404-409.
[5] Chen J M, Liu J, Leblanc S G, et al. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption [J]. Remote Sensing of Environment, 2003, 84(4): 516-525.
[6] Jupp D L B. Directional radiance and emissivity measurement models for remote sensing of the surface energy balance [J]. Environmental Modeling and Software, 1998, 13(3/4): 341-351.
[7] 杨沈斌, 申双和, 李秉柏, 等. ASAR数据与水稻作物模型同化制作水稻产量分布图[J]. 遥感学报, 2009, 13(2): 282-290.
[8] 刘良云, 宋晓宇, 李存军, 等. 冬小麦病害与产量损失的多时相遥感监测[J]. 农业工程学报, 2009, 25(1): 137-143.
[9] 王双, 朱秀芳, 潘耀忠, 等. 基于对地抽样总量控制下的玉米种植面积提取[J]. 遥感学报, 2009, 13(4): 701-706.
[10] 曹敏, 卞正富. ALOS影像提升小波融合的土地覆被分类研究[J]. 中国矿业大学学报, 2009, 38(5): 655-659.
[11] 江辉, 周文斌, 刘瑶. 鄱阳湖湿地遥感分类研究及应用[J]. 遥感技术与应用, 2008, 23(6): 648-652.
[12] Moody A. Using landscape spatial relationships to improve estimates of land-cover area from coarse resolution remote sensing [J]. Remote Sensing of Environment, 1998, 64(2): 202-220.
[13] 郑凌云, 张佳华. 草地净第一性生产力估算的研究进展[J]. 农业工程学报, 2007, 23(1): 279-285.
[14] Schino G, Borfecchia F, De Cecco L, et al. Satellite estimate of grass biomass in a mountainous range in central Italy [J]. Agroforestry Systems, 2003, 59: 157-162.
[15] 郑晓翾, 赵家明, 张玉刚, 等. 呼伦贝尔草原生物量变化及其与环境因子的关系[J]. 生态学杂志, 2007, 26(4): 533-538.
[16] Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancement of retrogradation of natural vegetation . NASA/GSFC, Type III, Final Report, Greenbelt, MD, USA, 1974: 1-371.
[17] Huete A R. A soil-adjusted vegetation index (SAVI) [J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
[18] Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices [J]. Remote Sensing of Environment, 1996, 55(2): 95-107.
[19] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index [J]. Remote Sensing of Environment, 1994, 48(2): 119-126.
[20] Gitelson A A, Kaufman Y, Merzlyak M. Use of a green channel in remote sensing of global vegetation from EOS-MODIS [J]. Remote Sensing of Environment, 1996, 58(3): 289-298.
[21] Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture [J]. Remote Sensing of Environment, 2004, 90(3): 337-352.
[22] Huete A, Justice C, Liu H. Development of vegetation and soil indices for MODIS [J]. Remote Sensing of Environment, 1994, 49(3): 224-234.
[23] Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation [J]. Journal of Plant Physiology, 2004, 161(2): 165-173.
[24] 韩利昌, 吕新龙. 羊草地上生物量的遥感估产及其不同步的修正[J]. 东北师大学报: 自然科学版, 1992, (2): 99-106.
[25] 杨秀春, 徐斌, 朱晓华, 等. 北方农牧交错带草原产草量遥感监测模型[J]. 地理研究, 2007, 26(2): 213-221.
[26] 张连义, 宝路如, 尔敦扎玛, 等. 锡林郭勒盟草地植被生物量遥感监测模型的研究[J]. 中国草地学报, 2008, 30(1): 6-14.
[27] Kurtz D B, Schellberg J, Braun M. Ground and satellite based assessment of rangeland management in subtropical Argentina [J]. Applied Geography, 2010, 30(2): 210-220.
[28] Sankey T T, Sankey J B, Weber K T, et al. Geospatial assessment of grazing regime shifts and sociopolitical changes in a Mongolian rangeland [J]. Rangeland Ecology and Management, 2009, 62(6): 522-530.
[29] Schellberg J, Hill M J, Gerhards R, et al. Precision agriculture on grassland: applications, perspectives and constraints [J]. European Journal of Agronomy, 2008, 29(2/3): 59-71.
[30] Paruelo J M, Pieiro G, Baldi G, et al. Carbon stocks and fluxes in rangelands of the Río de la Plata Basin [J]. Rangeland Ecology and Management, 2010, 63(1): 94-108.