资源利用与管理

土地利用变化对湿地景观连通性的影响 及连通性优化效应——以江苏盐城海滨湿地为例

展开
  • 1. 南京师范大学 地理科学学院, 南京 210046;
    2. 皖西学院 城市建设与环境系, 安徽 六安 237012
孙贤斌(1970- ),男,安徽含山人,副教授,博士,主要从事湿地景观生态和GIS应用研究。E-mail: sunxb98@126.com

收稿日期: 2010-01-20

  修回日期: 2010-03-14

  网络出版日期: 2010-06-30

基金资助

高等学校博士学科点专项科研基金(20070319001);国家自然科学基金项目(40871084);安徽省教育厅社科项目(2010sk397);安徽省人文地理学重点学科建设项目(皖西学院)。

Effects of Land Use Change on Wetland Landscape Connectivity and Optimization Assessment of Connectivity —A Case Study of Wetlands in the Coastal Zone of Yancheng,Jiangsu

Expand
  • 1. College of Geography, Nanjing Normal University, Nanjing 210046, China;
    2. Department of Urban Construction and Environmental Science, Wanxi University, Lu’an 237012, China

Received date: 2010-01-20

  Revised date: 2010-03-14

  Online published: 2010-06-30

摘要

土地利用与土地覆盖变化对湿地景观的结构和功能产生深刻的影响。选择江苏盐城海滨地区为研究对象,应用遥感和地理信息系统技术,分析20年来土地利用变化对湿地景观连通性的影响,并以2007年湿地景观生态系统服务功能为基础,采用阻力面模型探讨湿地景观连通性优化途径及其效应。结果显示:①1987—2007年间,盐城海滨区域土地利用结构变化显著。其中耕地面积比重由36.72%上升为46.17%,自然湿地持续减少,面积由44.4%减为26.01%,人工湿地持续增加,面积由9.96%上升为18.72%;②随着区域人类土地利用活动的加强,光滩、碱蓬沼泽和芦苇沼泽的空间连通性降低,区域土地利用导致湿地景观之间生态流阻隔,景观生态服务功能减弱;③2007年湿地景观生态功能强度空间差异显著,以累积耗费距离面、生态源地、耗费路径为依据,对湿地景观连通路径优化结果表明,废黄河口和大丰港附近等关键区域对景观连通性和生态流影响最大,是景观生态节点优化的首要对象;④加强连通路径的关键区域优化、提高景观连通度是实现景观优化的关键。

本文引用格式

孙贤斌,刘红玉 . 土地利用变化对湿地景观连通性的影响 及连通性优化效应——以江苏盐城海滨湿地为例[J]. 自然资源学报, 2010 , 25(6) : 892 -903 . DOI: 10.11849/zrzyxb.2010.06.002

Abstract

Land use and land cover change have been strongly affecting the function and structure of landscape ecosystem. Landscape pattern aims to build some optimized landscape which could make landscape eco-efficiency maximize and stabilize. Therefore, in this paper, the Yancheng coast is chosen as a study area and the technologies of remote sensing (RS) and geographical information system (GIS) are applied. Meanwhile, the valuation of wetlands landscape ecosystem services are used to analyze the landscape pattern. Based on ecological processes and resistance model, some proposals were put forward to optimize the wetlands landscape pattern. The results show: 1) The land use structure in the coastal zone of Yancheng has undergone significant change from 1987 to 2007. It is demonstrated that the percentage of farmland area ascends from 36.72 to 46.17, and the percentage of artificial wetland area ascends from 9.96 to 18.72,while that of natural wetland area declines from 44.4 to 26.01. 2) With more land use activities, the intensity of human disturbance to land increased from 1987 to 2007. A series of landscape ecological problems were caused by the increase of human disturbance to land, such as landscape shape complexity, low landscape ecological connectivity and more serious fragmentation of natural wetlands landscape. As a result of landscape ecological connectivity, function and the ecological process, such as energy flow in a landscape was declined. Ecological process and functions of wetlands in the coastal area were different in spatial distribution in 2007. The total value of ecosystem services is 77.09 billion yuan/a. The rate of contribution to the reed marsh, Saline seepweed marsh and Spartina alterniflora marsh is the highest, accounting for 86.91% of the total value, and they are mainly distributed between Sheyang Estuary and Doulong Port, and secondly distributed to south of Doulong Port, while the mud flat, paddy field and aquiculture pond is lower. 3) Based on an accumulative cost distance model, the calculation of the cost distance, and identification of the sources, the critical ecological positions, corridors, and sources were designed in the study area, and the landscape pattern optimization further discussed, such as protecting of nature resources, constructing the buffer region, rehabilitating suitable vegetation types to improve connectivity of landscape. 4) Optimization of wetlands landscape pattern improved flow and connectivity of landscape. The critical ecological positions for flow and connectivity of landscape close to the bays of the Old Huanghe River estuary and Dafeng Port was most important, and it was the primary object to be optimized. 5) According to the principles of landscape ecology, the key to optimize the landscape pattern is to strengthen protection of nature sources, and maintain high landscape connectivity in Yancheng coastal zone so as to realize the objectives of sustainable development in land-use and environmental protection.

参考文献

[1]. 欧维新, 杨桂山. 土地利用/覆被变化对海岸环境演变影响的研究进展[J]. 地理科学进展, 2003, 22(4): 360-368.
[2]. 刘红玉, 李兆富. 流域土地利用/覆盖变化对洪河保护区湿地景观的影响[J]. 地理学报, 2007, 62(11): 1215-1222.
[3]. 傅伯杰, 陈利顶, 王军, 等. 土地利用结构与生态过程[J]. 第四纪研究, 2003, 23(3): 247-255.
[4]. 熊春妮, 魏虹, 兰明娟. 重庆市都市区绿地景观的连接度[J]. 生态学报, 2008, 28(5): 2237-2244.
[5]. Philippe C, Burel F. The role of spatial-temporal patch connectivity at the landscape level: An example in a bird distribution [J]. Landscape Urban Planning, 1997, 38: 37-43.
[6]. Lucla P H, Saura S. Comparison and development of new graph-based landscape connectivity indices: Towards the priorization of habitat patches and corridors for conservation [J]. Landscape Ecology, 2006, 21(7): 959-967.
[7]. Holzk?mper A, Seppelt R. A generic tool for optimising land-use patterns and landscape structures [J]. Environmental Modeling & Software, 2007, 22: 1801-1804.
[8]. Quine C P, Watts K. Successful de-fragmentation of woodland by planting in an agricultural landscape? An assessment based on landscape indicators [J]. Journal of Environmental Management, 2009, 90: 251-259.
[9]. Saroinsong F, Harashina K, Arifin H, et al. Practical application of a land resources information system for agricultural landscape planning [J]. Landscape and Urban Planning, 2007, 79: 38-52.
[10]. Moilanen A. Landscape zonation, benefit functions and target-based planning: Unifying reserve selection strategies [J]. Biological Conservation, 2007, 134: 571-579.
[11]. Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning [J]. Landscape and Urban Planning, 1992, (23): 1-16.
[12]. 俞孔坚. 生物保护的景观生态安全格局[J]. 生态学报, 1999, 19(1): 8-15.
[13]. 岳德鹏, 王计平, 刘永兵, 等. GIS与RS技术支持下的北京西北地区景观格局优化[J]. 地理学报, 2007, 62(11): 1223-1231.
[14]. 李纪宏, 刘雪华. 基于最小费用距离模型的自然保护区功能分区[J]. 自然资源学报, 2006, 26(2): 217-224.
[15]. Adriaensen F, Chardon J P, De Blust G, et al. The application of 'least-cost’ modeling as a functional landscape model [J]. Landscape and Urban Planning, 2003, 64: 233-247.
[16]. 俞孔坚. 景观生态战略点识别方法与理论地理学的表面模型[J]. 地理学报, 1998, 53(增): 11-20.
[17]. 刘青松, 李杨帆, 朱晓东. 江苏盐城自然保护区滨海湿地生态系统的特征与健康设计[J]. 海洋学报, 2003, 25(3): 143-148.
[18]. Saura S, Pascual-Hortal L. Conefor Sensinode 2. 2 User’s Manual [Z]. 2007: 23-24.
[19]. Saura S, Torné J. Conefor Sensinode 2. 2: A software package for quantifying the importance of habitat patches for landscape connectivity [J]. Environmental Modeling & Software, 2009, 24: 135-139.
[20]. 谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003, 18(2): 189-196.
[21]. 张小飞, 王仰麟, 李正国. 基于景观功能网络概念的景观格局优化[J]. 生态学报, 2005, 25(7): 69-76.
[22]. 汤国安, 杨昕. ArcGIS地理信息系统空间分析实验教程[M]. 北京: 科学出版社, 2006: 446-449.

文章导航

/