黄土高原生态恢复程度及恢复潜力评估

牛丽楠, 邵全琴, 宁佳, 杨雪清, 刘树超, 刘国波, 张雄一, 黄海波

自然资源学报 ›› 2023, Vol. 38 ›› Issue (3) : 779-794.

PDF(9302 KB)
PDF(9302 KB)
自然资源学报 ›› 2023, Vol. 38 ›› Issue (3) : 779-794. DOI: 10.31497/zrzyxb.20230314
其他研究论文

黄土高原生态恢复程度及恢复潜力评估

作者信息 +

Evaluation on the degree and potential of ecological restoration in Loess Plateau

Author information +
文章历史 +

摘要

黄土高原是世界水土流失最严重的地区之一,2000年以来黄土高原重点实施了退耕还林还草等一系列生态工程,促进了生态恢复。为全面评估黄土高原地区生态恢复现状、生态恢复程度及恢复潜力,选取生态质量和生态系统服务两大类指标,采用模型模拟计算方法,对黄土高原2000—2019年生态恢复进行综合分析和评估。结果表明:(1)生态质量有所恢复转好,植被覆盖度和植被净初级生产力呈增加趋势。比较前后十年变化,植被覆盖度持续转好的面积占比为39.90%,植被净初级生产力持续转好的面积占比为82.71%。(2)生态系统服务有所恢复提高。水源涵养服务持续转好的面积占比为15.46%,土壤保持服务先转好(稳定)后稳定(转好)的面积占比为18.88%,风蚀区防风固沙服务持续转好面积占比为6.30%;水源涵养和土壤保持服务提高区域集中在农牧交错带地区,防风固沙服务提高区域集中在沙地和沙漠区。(3)综合生态恢复程度高的地区占全区面积的11.08%,主要分布在黄土丘陵沟壑区,仅少数无恢复地区占全区面积的3.51%,集中分布于沙地和沙漠区西北部地区。(4)植被覆盖恢复潜力高值区主要位于黄土塬沟壑区西部,低值区主要位于黄土丘陵沟壑区和河谷平原的部分地区,植被净初级生产力恢复潜力整体偏低,潜力较大区域主要位于黄土丘陵沟壑区。

Abstract

The Loess Plateau is the most fragile ecological environment and one of the most serious soil erosion areas in the world. China has implemented the Grain for Green Project and a series of ecological engineering in the Loess Plateau since 2000. They play a good role for ecosystem restoration. In order to assess the present situation, the ecological restoration degree and the ecological restoration potential in the Loess Plateau over the past 20 years, we selected ecological quality and ecosystem services to comprehensively analyze and evaluate the degree and potential of ecological restoration in this region from 2000 to 2019 by using ground and remote sensing monitoring data and model simulation. The results showed that: (1) The ecological quality was improved: Vegetation coverage and NPP showed an increasing trend. Compared with the changes from 2000 to 2009 and from 2010 to 2019, the proportion of the area with vegetation coverage and NPP continuously improved were 39.90% and 82.71%, respectively. (2) The ecosystem services improved: The areal proportion of water conservation service with continuous improvement was 15.46%, the areal proportion of soil conservation services first improved and then stabilized or first stabilized and then improved was 18.88%, the areal proportion of wind prevention and sand fixation service with continuous improvement was 6.30%. Water and soil conservation services were improved mainly in the farming-pastoral transitional zone of the gully region, while windbreak and sand-fixing service was improved mainly in the sandy and desert areas. (3) The areas with high degree of comprehensive ecological restoration accounted for 11.08%, which was mainly located in the gully region. Only a few non-restoration areas were mainly distributed in the northwest of the sandy land and desert region, accounting for 3.51%. (4) The restoration potential of vegetation coverage was 13.10%, the high value region was mainly located in the west of the gully region, and the low value region was mainly found in the southeast of the gully region and parts of the valley plain. The restoration potential of vegetation NPP is low on the whole, and the regions with greater potential are mainly located in the loess hilly-gully region.

关键词

生态质量 / 生态系统服务 / 生态恢复程度 / 生态恢复潜力

Key words

ecological quality / ecosystem services / ecological restoration degree / ecological restoration potential

引用本文

导出引用
牛丽楠, 邵全琴, 宁佳, 杨雪清, 刘树超, 刘国波, 张雄一, 黄海波. 黄土高原生态恢复程度及恢复潜力评估[J]. 自然资源学报, 2023, 38(3): 779-794 https://doi.org/10.31497/zrzyxb.20230314
NIU Li-nan, SHAO Quan-qin, NING Jia, YANG Xue-qing, LIU Shu-chao, LIU Guo-bo, ZHANG Xiong-yi, HUANG Hai-bo. Evaluation on the degree and potential of ecological restoration in Loess Plateau[J]. JOURNAL OF NATURAL RESOURCES, 2023, 38(3): 779-794 https://doi.org/10.31497/zrzyxb.20230314
目前人类数量激增与工农业迅速发展,生态系统受到干扰导致退化。生态退化成为全球环境面临的重大问题,生态恢复研究逐渐成为世界学者的研究热点[1]。生态恢复定义可以阐述为在生态系统层次上通过一定的生物技术和工程技术修复、改良、更新、恢复、重建受损或退化的生态系统,使其结构和功能恢复到一定的或原有的或更高水平的过程[2],其中恢复潜力用来衡量生境与参考目标的距离[3,4]。在全球环境日益恶化的情况下,人们逐步认识到生态恢复工作的重要性,不同学者分别从生态恢复目标、内容、过程等方面进行研究,如何进行生态综合治理、修复,恢复已退化生态系统成为重要研究课题之一[5]
国际上,2000年联合国发起了千年生态系统评估(Millennium Ecosystem Assessment,MA)[6],首次提出了生态系统评估框架体系与指标体系,评估了生态系统服务变化,提出了遏制生态系统退化的策略;美国农业部采用了工程区内外对比、工程实施前后对比等方法,对生态工程的生态恢复效果进行了评价[7];国际林业研究中心运用了BACI方法,评估了15个国家REDD+(在发展中国家通过减少砍伐森林和减缓森林退化而降低温室气体排放)战略的森林保护项目实施效果[8];国际自然保护联盟通过了基于自然的解决方案(NbS),加强生态保护和可持续发展目标之间的一致性,建立了扭转生态退化趋势的有效框架[9]。中国是世界上生态系统退化最严重的国家之一,也是较早开展生态恢复工作的国家之一[10]。20世纪50年代以来,中国已经批准和实施了一大批保护与生态恢复工程,1978年由国务院批准启动大型防护林体系建设工程,2000年开始实施天然林保护工程一期、京津风沙源治理工程一期、退耕还林工程、岩溶地区石漠化综合治理工程等。对于工程实施治理之后的生态系统恢复程度评估,自21世纪80年代,中国出现了纯定性评价研究,之后陆续引入新的定性或定量评价指标。目前对生态系统恢复程度评估已经进行了大量的研究工作,研究内容主要涵盖植被恢复及服务功能等方面,涉及区域包括流域、生态脆弱区、生态工程区等。高江波等[11]选择物种多样性、群落生物量以及群落覆盖度为指标,对青藏铁路穿越区进行生态系统恢复力评价;张文辉等[12]对黄土高原地区植被恢复和潜力进行了系统分析,提出了植被恢复的目标和策略,但是对于生态系统恢复及潜力的研究仅仅是进行了定性描述,缺少定量评价;孙泽兴等[13]以陕西省为研究区,基于空间遥感数据和生态模型模拟,从生态系统结构、质量和服务三个方面综合评估2000—2015年生态恢复效益,但对恢复潜力未做定量评估;吕振涛等[14]尝试在蒙古国依据相似生境原则,构建了植被恢复潜力计算模式,计算得到蒙古国植被恢复潜力值。国内外许多学者尝试研究生态系统恢复潜力及其定量评估方法,但目前多为经验性指标的定性评估,定量测度相对较少。
黄土高原地区地形破碎、土质疏松、暴雨集中,植被缺乏,生态环境脆弱,水土流失严重,是水土保持和生态修复建设的重点区域,是退耕还林工程的核心区域和中国生态恢复成效最显著的区域[15],同时黄土高原是中国西部大开发和区域经济社会发展的重要地区,具有承东启西的作用,因此中国一直高度重视黄土高原地区的生态治理工作。20世纪50—60年代,水利部和中国科学院等多家单位联合对黄土高原水土流失情况进行考察,提出治理工作的方向和措施;20世纪60—70年代,黄土高原修建大量淤地坝工程,80年代开展小流域综合治理工作;自2000年以来,开始大规模生态工程建设实施工作,包括退耕还林还草工程的大规模实施,三北防护林体系建设、防沙治沙、天然林资源保护等一系生态建设工程,植被覆盖度得到增加,生态系统得到了有效恢复。但目前仍存在资源开发与生态保护之间矛盾日益加剧的问题[16],因此对生态工程大规模实施后的黄土高原地区生态系统恢复程度进行定量评估具有重大现实意义,可以为区域综合治理提供科学依据,维护国家生态安全。本文选取生态质量、生态系统服务为主要生态恢复指标,基于地面数据、气温、降水、遥感影像等大量数据为基础,利用修正土壤流失方程(RUSLE)、修正土壤风蚀方程(RWEQ)等模型方法和统计分析方法,对黄土高原近20年生态恢复现状、恢复程度和恢复潜力进行了定量评估,旨在为黄土高原后期生态工程建设方向提供科学依据。

1 研究方法与数据来源

1.1 研究区概况

黄土高原位于黄河中游地区,介于100°54′~114°33′E、33°43′~41°16′N之间,总面积约64.87万km2,横跨内蒙古、青海、宁夏、甘肃、陕西、河南和山西7省区341个县市。地势西北高东南低,主要地貌类型有丘陵、高塬、阶地、平原、土石山地等;气候属大陆性季风气候,位于半湿润区向半干旱区过渡地带,年均温3.6~14.3 ℃,年均降雨量150~750 mm,降雨主要集中在夏季7-9月;大部分为黄土覆盖,土质疏松,全区植被稀疏。因地貌、气候、土壤、植被等特殊性,黄土高原是世界上生态环境最脆弱和水土流失最严重的地区之一,高度聚集的人口和强烈的人类活动使得该地区生态环境面临沉重压力。本文采用国家发展和改革委员会发布的黄土高原综合治理分区,以土壤侵蚀与泥沙类型分布、地貌特点、林业生态建设分区等研究成果为依据,保证区域内自然条件、自然资源组合特征的相对一致性和综合治理措施与途径的相对一致性,将黄土高原划分为6个综合治理区,即黄土塬沟壑区、黄土丘陵沟壑区、土石山区、河谷平原区、沙地和沙漠区、农灌区[17]图1)。
图1 黄土高原治理分区

Fig. 1 Governance partition of Loess Plateau

Full size|PPT slide

1.2 数据来源与处理

植被数据主要为归一化植被指数(NDVI)栅格数据,来源于MODIS-NDVI,时间分辨率16天,空间分辨率为1 km;植被净初级生产力(NPP)数据来源于MODIS产品,空间分辨率为500 m,经重采样处理为1 km空间分辨率;气象数据来源于中国气象数据共享网,包括温度、降雨量数据等,空间分辨率处理为1 km;土壤属性数据来源于中国科学院资源环境数据中心网站,1∶100万土壤数据库;地面数字高程模型数据(DEM)来源于地理空间数据云SRTMDEM,空间分辨率为90 m;自然保护地边界数据,采用由中国林科院资信所在国家地球系统科学数据中心共享服务平台(http://www.geodata.cn/index.html)共享的2013—2016年全国自然保护区空间分布数据集。为统一多源数据的空间分辨率,以所有数据中最低空间分辨率1 km作为基本分析单元。

1.3 研究方法

1.3.1 生态质量

(1)植被覆盖度数据获取方法
植被覆盖度FVC由主要利用遥感产品NDVI通过像元二分法计算[18]得到,公式如下:
FVC=(NDVI-NDVImin)(NDVImax-NDVImin)
(1)
式中: NDVImax取95%处的NDVI值作为纯植被像元NDVI值,高于该值用最大值替代; NDVImin取5%处的NDVI值作为裸土像元NDVI值,低于该值用最小值替代,最终生成2000—2019年1 km分辨率的植被覆盖度数据。
(2)植被净初级生产力数据获取方法
植被净初级生产力(NPP)数据来源于MODIS的MOD17A3HGF产品,采用MRT等软件对该产品进行了子集提取、格式转换、投影变换、图像镶嵌等处理,得到中国区域的MODIS-NPP镶嵌数据,根据缩放因子进行栅格代数操作,重采样最终生成2000—2019年1 km分辨率的NPP数据。

1.3.2 生态系统服务

生态系统服务是一项非常复杂的评估过程,可分为供给服务、调节服务和文化服务等类型[19],本文主要选取了对黄土高原生态环境恢复变化响应最直接的三项基础生态系统调节服务,水源涵养、土壤保持和防风固沙,在此暂不考虑其他服务类型。
(1)水源涵养服务评估方法
水源涵养量估算采用水量平衡法计算,本文综合运用了以水量平衡法为基本原理的InVEST模型[20,21]和《生态红线划定指南》中的方法。根据《生态红线划定指南》,将时间尺度为月份的降水、蒸散量和径流数据,合并为季度和年份数据,并把年份降水、蒸散量和径流数据代入InVEST模型中,公式如下:
Qwr=P-ET-R=1-ETP×P-u×P
(2)
ETP=1+PETP-[1+(PETP)ω]1/ω
(3)
PET=KcET0
(4)
ω=ZAWCP+1.25
(5)
式中: Qwr为水源涵养量(mm); P为降水量(mm); R为地表径流量(mm); ET为实际蒸散量(mm);PET为潜在蒸散量(mm);ET0为参考作物蒸散量(mm),采用Hargreaves公式[22]计算得到参考作物蒸散量;Kc为蒸散系数,采用联合国粮农组织蒸散系数参考值;AWC为植被有效可利用水含量(mm),利用土壤质地计算得到[23]Z为Zhang系数,是表征降水季节性特征的一个常数,其值在1~10之间,降水主要集中在冬季时,其值接近于10,降水主要集中在夏季或季节分布较均匀时,其值接近于1,取默认值; ω代表由自然气候和土壤性质决定的非物理经验参数;u为径流系数,采用美国农业部土壤保持局开发的SCS水文模型[24],最终生成2000—2019年1 km分辨率的水源涵养服务数据。
(2)土壤保持服务评估方法
生态系统土壤保持服务通过土壤水蚀模数来衡量,土壤水蚀模数采用修正通用土壤流失方程(RUSLE)计算得到[25],公式如下:
A=R×K×LS×C×P
(6)
式中:A为土壤水蚀模数 [t/(hm2·a)];R为降雨侵蚀力因子 [MJ·mm/(hm2·h·a)],基于日降雨量的半月降雨侵蚀力模型估算[26]K为土壤可蚀性因子 [t·hm·h/(hm2·MJ·mm)],采用EPIC模型[27]计算得到;LS为坡长坡度因子,采用刘宝元等[28]的研究方法计算;C为植被覆盖因子,该因子采用蔡崇法等[29]的方法计算得到;P为水土保持措施因子。LSCP无量纲,最终生成2000—2019年1 km分辨率的土壤保持服务数据。
(3)防风固沙服务评估方法
黄土高原地区存在部分风蚀地区,生态系统防风固沙服务通过土壤风蚀模数来衡量,土壤风蚀模数采用修正土壤风蚀方程(RWEQ)计算,公式如下:
SL=Qxx
(7)
Qx=Qmax1-exs2
(8)
Qmax=109.8×(WF×EF×SCF×K'×COG)
(9)
s=150.71×(WF×EF×SCF×K'×COG)-0.3711
(10)
式中:SL为土壤风蚀模数 [kg/(m2·a)];x为地块长度(m);Qx为地块长度x处的沙通量(kg/m);Qmax为风力的最大输沙能力(kg/m);s为关键地块长度(m);WF为气象因子,具体数据处理及计算参考巩国丽等[30]研究成果;EF为土壤可蚀性因子;SCF为土壤结皮因子,两因子采用Fryear等[31]方法计算;K′为土壤糙度因子,采用Saleh[32]方法计算;COG为植被因子,包括平铺、直立作物残留物和植被冠层,最终生成2000—2019年1 km分辨率的防风固沙服务数据。

1.3.3 生态恢复程度评估方法

本文利用Sen趋势法和Mann-Kendall显著性检验方法,分别计算生态系统质量(植被覆盖度、植被净初级生产力)和生态系统服务(水源涵养、土壤保持、防风固沙)变化斜率或趋势,并进行显著性检验,具体计算方法参考相关文献[33,34]。通过比较2000—2009年和2010—2019年两时段的变化趋势情况,判定总体恢复变化趋势。通过叠加2000—2019年5种生态指标变化趋势情况,判定综合生态系统恢复程度。

1.3.4 生态恢复潜力评估方法

根据恢复潜力相关定义,以相似生境原则定义参考生境,通过衡量生境与参考目标之间的距离来计算恢复潜力[3,4],邵全琴等[35]定义地带性顶极生态系统本底为与评估区地处同一生态地理区的相同生态系统自然保护区内所具有的生态状态,本文利用邵全琴等[35]研究的生态恢复潜力评估方法,以地带性顶级生态系统下的本底数据为参考目标,利用气温和降水建立拟合方程,具体方法如下:
(1)地带性顶极生态系统下本底数据获取
提取在生态地理分区叠加国家和省级自然保护区内的森林、草地和荒漠生态系统中的生态质量数据,分别与年均温度和年降水量建立拟合方程。
Fvij=a+b×tempij+c×preij
(11)
式中:Fvij为第i生态地理分区自然保护区内第j种生态系统类型平均植被覆盖度或净初级生产力;tempij为第i生态地理分区自然保护区内第j种生态系统类型平均气温(℃);preiji生态地理分区自然保护区内第j种生态系统类型平均降水量(mm)。
利用拟合的各方程与气温和降水,模拟得到森林、草地和荒漠生态系统顶极植被覆盖度和净初级生产力,若顶极值小于实际值,则由实际值替代。
(2)生态恢复潜力计算
将生态现状与其相应的顶级生态本底比较,计算生态恢复潜力。
Fpotential=FmaxF
(12)
式中:Fpotential为恢复潜力差距;Fmax为顶级本底;F为现状。差距越大,则恢复潜力越大。
为减少气候波动导致的各年之间的误差,选择最近三年2017—2019年植被覆盖度和净初级生产力平均值作为生态现状,在一定程度上避免潜力高估或低估。为匹配生态现状数据和减少气候波动误差,利用拟合的各方程与2017—2019多年平均年均温和年降水量,模拟得到2017—2019年顶级生态本底数据。

2 结果分析

2.1 生态质量恢复状况分析

2019年,黄土高原年平均植被覆盖度为54.89%,河谷平原区植被覆盖度最高,为72.76%,沙地和沙漠区植被覆盖度最低,为18.19%。空间趋势为东部较高西北部较低,以农牧交错带边缘形成明显分界,因东部为湿润区而西北部为干旱区,降水年际变化较大,造成植被覆盖度空间差异较大,应对该区域进行重点关注,比较2000—2009年与2010—2019年两个十年年均植被覆盖度,该界线明显向西北撤退,植被得到了一定的恢复,各区两时段变化率均为增加(图2表1)。
图2 2000—2019年黄土高原平均植被覆盖恢复状况

Fig. 2 Average of restoration of vegetation coverage in the Loess Plateau from 2000 to 2019

Full size|PPT slide

表1 2000—2019年多年平均黄土高原植被覆盖度变化

Table 1 Average annual value of restoration of vegetation coverage in the Loess Plateau from 2000 to 2019 (%)

综合治理分区 2000—2009年 2010—2019年 变化率
农灌区 30.76 34.84 4.08
沙地和沙漠区 14.95 17.45 2.50
黄土丘陵沟壑区 45.80 55.57 9.77
土石山区 73.68 76.94 3.26
黄土塬沟壑区 50.29 56.17 5.88
河谷平原区 72.79 74.81 2.02
比较两个时段植被覆盖度变化趋势,持续转差的面积占比约1.89%,先转好(稳定)后转差的面积占比17.78%,先转差后转好(稳定)的面积占比5.64%,保持稳定的面积占比9.24%,持续转好的面积占比39.90%,其中黄土丘陵沟壑区植被覆盖度持续转好面积较大,主要分布在农牧交错带地区,持续变差区域主要位于西北区域土石山区和河谷平原区,在河谷平原区由于城镇化加快,耕地面积不断增加,同时,西安、咸阳等一些大城市的发展导致更多耕地转为建设用地,植被覆盖度呈下降趋势,植被退化严重(图3)。
图3 2000—2019年黄土高原植被覆盖度恢复趋势

Fig. 3 Restoration trend of vegetation coverage in the Loess Plateau from 2000 to 2019

Full size|PPT slide

2019年,黄土高原年平均植被NPP为337.21 g C/m²,河谷平原区植被NPP最高,为421.32 g C/m²,沙地和沙漠区植被覆盖度最低,为155.65 g C/m²。空间趋势为东部较高西北部较低,与植被覆盖度空间趋势相似,对比黄土高原植被类型情况[33],植被NPP高值区主要植被类型为阔叶林,低值区主要植被类型为草原或植被覆被较少的区域。比较2000—2009年与2010—2019年两个十年年均植被NPP,高值区域面积有明显增加,低值区域面积变化不明显,仍集中在沙地和沙漠区,最低值集中于毛乌素沙漠范围内。各区两时段变化率均在15%以上(图4表2)。
图4 2000—2009年黄土高原平均植被NPP恢复状况

Fig. 4 Average restoration of vegetation NPP in the Loess Plateau from 2000 to 2019

Full size|PPT slide

表2 2000—2019年黄土高原平均植被NPP变化

Table 2 Average annual value of restoration of vegetation NPP in the Loess Plateau from 2000 to 2019

综合治理分区 2000—2009年/(g C/m2) 2010—2019年/(g C/m2) 变化率/%
农灌区 146.98 183.12 24.59
沙地和沙漠区 102.62 136.81 33.32
黄土丘陵沟壑区 222.64 315.34 41.64
土石山区 351.44 405.07 15.26
黄土塬沟壑区 294.65 372.58 26.45
河谷平原区 357.43 432.86 21.10
计算并比较两个时段植被NPP的变化趋势,持续转差的面积占比约0.03%,先转好(稳定)后转差的面积占比为1.5%,先转差后转好(稳定)的面积占比为0.61%,保持稳定的面积占比为3.22%,持续转好的面积占比为82.71%,全区植被NPP大范围为持续增加趋势(图5)。
图5 2000—2019年黄土高原植被NPP恢复趋势

Fig. 5 Restoration trend of vegetation NPP in the Loess Plateau from 2000 to 2019

Full size|PPT slide

2.2 生态系统服务恢复状况分析

2019年黄土高原单位面积水源涵养量为311.56万m3/km2表3)。其中,河谷平原区单位面积水源涵养量最高,为582.55万m3/km2,黄土丘陵沟壑区最低,为165.47万m3/km2,空间格局差异明显,靠近南部位于半湿润气候区的治理区,水源涵养服务较好(图6a)。黄土高原区平均土壤水蚀模数为13.20 t/hm2,其中:黄土塬沟壑区平均土壤水蚀模数最高为20.58 t/hm2;黄土丘陵沟壑区也较高为17.40 t/hm2;河谷平原区最低为6.46 t/hm2。沙地和沙漠区主要受风蚀影响,水蚀模数较低,受地形和气候的双重影响,黄土塬沟壑区和丘陵沟壑区水蚀较严重,土壤保持服务功能较低,该地区也是中国农牧交错带地区,应作为重点生态区域予以重点关注(图6b)。黄土高原风蚀区平均土壤风蚀模数为1.29 t/hm2,主要是沙地和沙漠区受风蚀的影响较大,平均土壤风蚀模数为4.42 t/hm2图6c)。
表3 2019年黄土高原生态系统服务量

Table 3 Ecosystem services in the Loess Plateau in 2019

黄土高原治理分区 单位面积水源涵养量
/(万m3/km2)
土壤水蚀模数
/(t/hm2)
土壤风蚀模数
/(t/hm2)
农灌区 172.14 7.82 3.86
河谷平原区 582.55 6.46 0.15
黄土塬沟壑区 447.35 20.58 1.31
土石山区 251.17 7.24 0.18
黄土丘陵沟壑区 165.47 17.40 0.64
沙地和沙漠区 232.03 4.39 4.42
图6 2019年黄土高原生态系统服务现状

Fig. 6 Ecosystem service in the Loess Plateau in 2019

Full size|PPT slide

2010—2019年与2000—2009年相比,黄土高原水源涵养服务持续转差的面积占比约1.88%,先转好(稳定)后转差的面积占比为17.78%,先转差后转好(稳定)的面积占比为1.00%,先稳定后转好或先转好后稳定的面积占比为42.15%,保持稳定的面积占比为26.65%,持续转好的面积占比为15.46%,区域大范围水源涵养服务有转好趋势,河谷平原区有部分区域先转好后转差(图7a)。两时段内,土壤保持服务持续变差的面积占比为0.04%,先转差后转好(稳定)的面积占比为0.45%,先稳定(转好)后转差的面积占比为3.31%,保持稳定的面积占比为76.99%,先转好后稳定或先稳定后转好的面积占比为18.88%,持续转好的面积占比为0.32%。转好区域主要集中在黄土塬沟壑区和黄土丘陵沟壑区,土壤保持服务虽然在该区域较差但有所提升,一直在恢复中(图7b)。两时段内,风蚀区防风固沙服务持续转好面积占比为6.30%,先转好后稳定为5.29%,主要集中在西北部干旱气候区沙地和沙漠区,是防风固沙服务的主要响应区域。两个时段黄土高原地区生态系统服务总体都具有转好的趋势,生态状况有所恢复(图7c)。
图7 2000—2019年黄土高原生态系统服务变化趋势

Fig. 7 Changing trend of ecosystem service in the Loess Plateau from 2000 to 2019

Full size|PPT slide

2000—2019年生态系统水源涵养量年均变化速率为2.38 m3/hm2,整体呈现上升趋势(图8a)。年均水源涵养量增加区域主要位于黄土塬沟壑区、黄土丘陵沟壑区和沙地沙漠区,通过0.05显著性检验的区域面积占比为6.02%(图8b);水蚀模数年均变化速率为 -0.67 t/(hm2·a),整体呈现轻微递减趋势(图8c),其中,黄土丘陵沟壑区水蚀模数年均变化速率为-1.12 t/(hm2·a),土石山区水蚀模数年均变化速率为-1.13 t/(hm2·a),河谷平原区水蚀模数年均变化速率为-1.07 t/(hm2·a),黄土塬沟壑区水蚀模数年均变化速率为 -0.77 t/(hm2·a),农灌区水蚀模数年均变化速率为0.25 t/(hm2·a)。土壤保持服务恢复高值区主要集中在黄土丘陵沟壑区和黄土塬沟壑区,除农灌区其他分区都有一定恢复转好,通过0.05显著性检验的区域面积占比为10.49%(图8d)。风蚀区风蚀模数年均变化速率为-0.45 t/(hm2·a),整体呈现轻微递减趋势(图8e)。其中,沙地和沙漠区风蚀模数年均变化速率为-1.61 t/(hm2·a),农灌区风蚀模数年均变化速率为-1.16 t/(hm2·a),防风固沙服务在风蚀重点区域均有一定程度的恢复增强,特别是沙地和沙漠区,通过0.05显著性检验的区域面积占比为49.98%(图8f)。
图8 2000—2019年黄土高原生态系统服务变化趋势及其显著性检验

Fig. 8 Changing trends and their significance level of ecosystem services in the Loess Plateau from 2000 to 2019

Full size|PPT slide

2.3 生态恢复程度综合评估

叠加分析5种生态指标2000—2019年的变化趋势情况,因选取的生态指标主要呈恢复转好趋势,所以不再讨论保持稳定和退化的情况(图9)。4个及以上生态指标全部转好的区域为恢复程度高的地区,占全区面积的11.08%(表4),主要位于黄土塬沟壑区和黄土丘陵沟壑区,该区域为干旱气候区和湿润气候区的交接地带,也是中国农牧交错带地区,生态地位十分重要,生态环境和社会经济复杂,目前生态环境有一定的恢复,有逐渐转好趋势。3个生态指标转好区域为恢复程度较高区域,面积最大,占全区面积的34.86%。2个生态指标变好区域为恢复程度中等区域,为32.86%,在各分区分布广泛。仅少数地区存在均未转好即无恢复区域,集中分布于沙地和沙漠区西北部地区,占全区面积的3.51%,该区域生态环境恶劣,以沙地为主,恢复难度大。
图9 2000—2019年黄土高原生态恢复状况

Fig. 9 Ecological restoration in the Loess Plateau from 2000 to 2019

Full size|PPT slide

表4 2000—2019年黄土高原生态恢复状况面积统计

Table 4 Area statistics of ecological restoration in the Loess Plateau from 2000 to 2019

生态恢复状况 面积/万km2 面积占比/%
无恢复 21859 3.51
恢复程度较低 112217 17.99
恢复程度中等 203076 32.57
恢复程度较高 217386 34.86
恢复成度高 69064 11.08

2.4 生态恢复潜力评估

黄土高原森林、草地和荒漠植被覆盖度恢复潜力为13.10%(图10),其中,农灌区为18.27%,沙地和沙漠区为15.15%,黄土丘陵沟壑区为11.29%,土石山区为9.50%,黄土塬沟壑区为14.92%,河谷平原区为7.66%。植被覆盖度恢复潜力高值区域位于黄土塬沟壑区西部,该区域植被覆盖度较低,存在一定的恢复空间;较高区域位于沙地和沙漠区,该区域现状植被覆盖度低但因受气候、土壤等先天自然条件影响,恢复能力有一定局限性;低值区主要位于东南部黄土塬沟壑区和黄土丘陵沟壑区的东南部,现状植被覆盖较高,已得到了较好的恢复。
图10 黄土高原植被覆盖度恢复潜力

Fig. 10 Restoration potential of vegetation coverage in the Loess Plateau

Full size|PPT slide

黄土高原森林、草地和荒漠植被的NPP恢复潜力为77.21 g C/m2,其中,农灌区为91.50 g C/m2,沙地和沙漠区为72.55 g C/m2,黄土丘陵沟壑区为85.69 g C/m2,土石山区为79.31 g C/m2,黄土塬沟壑区为71.87 g C/m2,河谷平原区为84.65 g C/m2图11)。因现状植被NPP恢复较好,整体恢复潜力偏低,其中较高值区域位于黄土丘陵沟壑区中,该区域植被覆盖度较小且位于半干旱区,受降雨影响较大,但降雨较少,主要植被类型为草地,草地有一定的固碳能力,但目前覆盖度较低,具有一定的恢复潜力,可通过恢复草地覆被进行恢复。
图11 黄土高原植被NPP恢复潜力

Fig. 11 Restoration potential of vegetation NPP in the Loess Plateau

Full size|PPT slide

3 结论与讨论

3.1 结论

本文基于多种模型模拟计算,进行了2000—2019年近20年黄土高原地区生态恢复状况及恢复潜力研究,主要结论如下:
(1)生态质量有所恢复转好:2010—2019年较2000—2009年植被覆盖度有所提升,持续转好区域主要位于黄土丘陵沟壑区,面积占比为39.90%,植被NPP高值区域面积明显增加,低值区域面积几乎无变化,持续转好区域的面积占比为82.71%。
(2)生态系统服务有所恢复提高:2010—2019年与2000—2009年相比,水源涵养服务持续转好的面积占比为15.46%,土壤保持服务先转好后稳定或先稳定后转好的面积占比为18.88%,风蚀区防风固沙服务持续转好面积占比为6.30%,先转好后稳定为5.29%。近20年生态系统服务总体向好,部分转差。
(3)综合生态恢复程度高的地区占全区面积的11.08%,主要位于黄土丘陵沟壑区;无恢复地区占3.51%,集中分布在于沙地和沙漠区。植被覆盖度恢复潜力为13.10%,高值区主要位于黄土塬沟壑区西部,低值区主要位于黄土丘陵沟壑区和河谷平原部分区域;植被NPP恢复潜力为77.21 g C/m2,整体恢复潜力偏低,潜力较大区域主要位于黄土丘陵沟壑区,可通过提高草地覆被面积进行恢复。

3.2 讨论

自2000年以来,黄土高原开始大规模实施退耕还林还草等生态建设工程,评估生态工程实施后恢复程度具有重要意义。本文计算植被覆盖度呈现增长趋势,空间差异明显,以半干旱气候区与半湿润气候区过渡地带为明显分界。该区域为农牧交错带地区,生态环境极为脆弱,是遏制中国荒漠化东移的重要生态屏障[36]。比较2000—2009年与2010—2019年两个十年年均植被覆盖度,低覆盖度区域明显向西北撤退,该区域植被得到了一定的恢复,同时生态质量恢复转好也主要发生在该区域。植被NPP与植被覆盖度空间分布相似,植被的增加是生态系统固碳能力提高的重要原因[37],比较前后十年植被NPP恢复情况,位于东南部的高值区面积有所增加,低值区面积变化不明显,主要因为黄土高原东南部位于半湿润地区,植被经过多年生长,有较强的固碳能力,而西北部的沙地和沙漠区气候干旱,植被生长缓慢,固碳能力增长较慢[38]。总体而言,生态工程对于生态质量恢复具有较大的推动作用,水源涵养与土壤保持服务增长区域主要位于半干旱半湿润过渡地带。该区域地势平坦,自实施退耕还林等生态工程以来,林地覆盖度增加,因林冠层有截留雨水的作用,且根系可以提高土壤稳定性,使得水源涵养与土壤保持服务有所提高[39]。防风固沙服务主要在沙地和沙漠治理区表现为增长趋势,虽然植被较少,但是草沙障、固沙网等工程措施的实施对固沙服务具有重要的提升作用。不同生态系统服务在研究区的时空变化,后期更多制约于本底气候、地貌、土壤等因素,而非植被变化。其他学者主要进行了植被覆盖和单一生态系统服务研究[40-42],而本文选取生态质量中两个指标和生态系统服务中三个指标综合进行生态恢复程度评估,恢复程度较高区域位于半干旱半湿润过渡区,农耕区向草原牧区过渡的特殊地区,该区域是受人类活动影响最剧烈地区,综合了退耕还林、退牧还草、三北防护林、天然林保护等重大生态工程,生态工程实施成效显著。
目前对于植被恢复潜力的定量研究较少,高海东等[43]研究从水分的植被承载力入手,采取统计分析方法进行植被恢复潜力研究;赵广举等[44]根据黄土高原地理、植被、土壤、地形和气候五大类因素进行叠加分区,分区评估能够达到的植被覆盖程度。但上述研究都未考虑不受人类影响的自然恢复能达到的顶级生态系统状态,本文提取在相同生态地理分区中的国家和省级自然保护区(不受人类影响的自然恢复区)生态质量数据,结合气候变化,近似获得黄土高原顶级生态系统下的本底数据,与生态现状相比得到恢复潜力。因植被恢复潜力受气候、地形等自然环境影响较大,不同分区自然环境不同,水热条件差异较大,所以各区域顶级本底有所不同,导致恢复潜力有所差异。因此不应过度追求植树造林增加植被覆盖度,应根据不同分区生态地理特征,结合当地具体条件,采取相应的生态措施进行恢复,对恢复潜力较高地区可进一步加强生态措施,潜力较低但顶级本底较高地区以维护和自然恢复为主,从而进行有效的生态措施分区管理。
本文最终生成的数据集为2000—2019年1 km生态质量数据集和生态系统服务数据集,估算过程中使用了不同精度的数据,考虑到高分辨率影像难以获得以及研究区域的空间尺度,为统一多源数据尺度,将各结果统一为1 km空间分辨率进行分析,但该精度的生态系统服务评估也较为粗糙[45],如地形是影响土壤侵蚀强度和分布的重要因素之一[46,47],黄土高原地形复杂多样,在土壤侵蚀计算中需要获取更精细的地形数据得到更高精度的土壤保持服务数据以提高结果的可靠性,今后需进一步提高数据源精度,提高结果的准确性。

参考文献

[1]
李洪远, 鞠美庭. 生态恢复的原理与实践. 北京: 化学工业出版社, 2004.
[LI H Y, JU M T. Principles and Practices of Ecological Restoration. Beijing: Chemical Industry Press, 2004.]
[2]
吴丹丹, 蔡运龙. 中国生态恢复效果评价研究综述. 地理科学进展, 2009, 28(4): 622-628.
[WU D D, CAI Y L. Evaluation of ecological restoration effects in China: A review. Progress in Geography, 2009, 28(4): 622-628.]

Along with the degradation of the global environment, restoration ecological research and restoration practices for degraded ecosystem have been developed as one of the scientific hotspots and public focuses around the world. China, whose ecosystem has degraded drastically, is one of the earliest countries which carried out the research and practice of ecological restoration. Since the 1950s China has authorized and put a number of ecological conservation and restoration projects in practice. The evaluation of ecological restoration effects is not only an indispensable element of these ecological restoration projects, but also can provide important information to modulate and optimize the further implementation of these projects. According to a systematic summary of the study progress on effects evaluation of ecological restoration in China, the paper supplies a brief account of effects evaluation from the aspects of its content, approach, method and technology, and based on analyzing problems of restoration ecological research and restoration practices for degraded ecosystem in China, five proposals are suggested to promote ecological restoration research in China.

[3]
LAUGHLIN D C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 2014, 17(7): 771-784.
Manipulating community assemblages to achieve functional targets is a key component of restoring degraded ecosystems. The response-and-effect trait framework provides a conceptual foundation for translating restoration goals into functional trait targets, but a quantitative framework has been lacking for translating trait targets into assemblages of species that practitioners can actually manipulate. This study describes new trait-based models that can be used to generate ranges of species abundances to test theories about which traits, which trait values and which species assemblages are most effective for achieving functional outcomes. These models are generalisable, flexible tools that can be widely applied across many terrestrial ecosystems. Examples illustrate how the framework generates assemblages of indigenous species to (1) achieve desired community responses by applying the theories of environmental filtering, limiting similarity and competitive hierarchies, or (2) achieve desired effects on ecosystem functions by applying the theories of mass ratios and niche complementarity. Experimental applications of this framework will advance our understanding of how to set functional trait targets to achieve the desired restoration goals. A trait-based framework provides restoration ecology with a robust scaffold on which to apply fundamental ecological theory to maintain resilient and functioning ecosystems in a rapidly changing world.© 2014 John Wiley & Sons Ltd/CNRS.
[4]
CHOI Y D. Theories for ecological restoration in changing environment: Toward futuristic restoration. Ecological Research, 2004, 19(1): 75-81.
[5]
董安涛, 史正涛, 苏旺德, 等. 南汀河流域生态恢复潜力评价. 生态经济, 2015, 31(10): 116-120.
[DONG A T, SHI Z T, SU W D, et al. The evaluation of the ecological restoration in the watershed of Nanting River Basin. Ecological Economy, 2015, 31(10): 116-120.]
[6]
REID W V, MOONEY H A, CROPPER A, et al. Millennium Ecosystem Assessment Synthesis Report. Washington DC: Island Press, 2005.
[7]
EULISS N H, SMITH L M, LIU S G, et al. Integrating estimates of ecosystem services from conservation programs and practices into models for decision makers. Ecological Applications, 2011, 21(3): 128-134.
[8]
BORNER J, BAYLIS K, CORBERA E, et al. Emerging evidence on the effectiveness of tropical forest conservation. PLoS One, 2016, 11: 23-26.
[9]
COHEN S E, ANDRADE A, DALTON J, et al. Core principles for successfully implementing and upscaling Nature-based Solutions. Environmental Science & Policy, 2019, 98: 20-29.
[10]
于秀波. 我国生态退化、生态恢复及政策保障研究. 资源科学, 2002, 24(1): 72-76.
摘要
中国生态退化呈现为区域性、累积性与综合性的新特点。生态退化的原因主要是:自然环境脆弱、资源利用不合理、资源利用过度以及部门与地区间的利益冲突。生态恢复社会经济发展的必然选择,它符合国际潮流,反映了人们对生态系统服务功能的新认识。西北开发可能加大生态保护的压力,生态建设规划水平低、建设速度赶不上退化速度,而且巩固建设成果的难度大,生态恢复存在着失败风险。生态恢复的政策保障包括保持一定数量的基本农田,调整土地利用结构,发展代替产业政策,用经济手段恢复生态,完善生态恢复的政策体系等。
[YU X B. Ecological degradation and policy implication for ecological restoration in China. Resources Science, 2002, 24(1): 72-76.]
[11]
高江波, 赵志强, 李双成. 基于地理信息系统的青藏铁路穿越区生态系统恢复力评价. 应用生态学报, 2008, 19(11): 2473-2479.
[GAO J B, ZHAO Z Q, LI S C. Evaluation of ecosystem resilience in the regions across Qinghai-Tibet railway based on GIS. Chinese Journal of Applied Ecology, 2008, 19(11): 2473-2479.]
Based on GIS technique and the methods of mean-squared deviation weight decision and catastrophe progression, a more clear definition and associated evaluation for ecosystem resilience were given, with a case study in the regions across Qinghai-Tibet railway by using the indices of plant community coverage, species diversity, and biomass. It was shown that the areas with high ecosystem resilience were mainly located in the Qilian Mountain meadow grassland, Huangshui Valley needle-leaved and deciduous broad-leaved forest, and south Tanggula Mountain kobresia swamp meadow, while those with the lowest resilience were in the central part of Qaidam Basin, and the Kunlun Mountains. Most areas in the regions had higher or medium ecosystem resilience, with a trend of that in the south of Kunlun Mountains, the resilience in the north of the railway was lower, while in the east of Qaidam Basin (especially in the Qinghai Lake area), the resilience was lower in the south than in the north of the railway. Through the evaluation of ecosystem resilience, the key issues in the process of ecological resilience could be found, and corresponding effective measures would be pointed out to manage alpine ecosystems. Moreover, combining with the evaluation of vulnerability, scientific basis for regional development could be provided to avoid or mitigate the negative effects of human activities on eco-environment.
[12]
张文辉, 刘国彬. 黄土高原植被恢复与建设策略. 中国水土保持, 2009, (1): 24-27.
[ZHANG W H, LIU G B. Vegetation rehabilitation and building of Loss Plateau. Soil and Water Conservation in China, 2009, (1): 24-27.]
[13]
孙泽兴, 李汶怡, 刘嘉敏, 等. 陕西省生态恢复综合效益评估. 生态学报, 2022, 42(7): 1-12.
[SUN Z X, LI W Y, LIU J M, et al. Evaluation of comprehensive benefit for ecological restoration in Shaanxi province. Acta Ecologica Sinica, 2022, 42(7): 1-12.]
[14]
吕振涛, 李生宇, 范敬龙, 等. 蒙古国植被自然恢复潜力. 中国沙漠, 2021, 41(5): 192-201.
[LYU Z T, LI S Y, FAN J L. Natural restoration potential of vegetation in Mongolia. Journal of Desert Research, 2021, 41(5): 192-201.]
[15]
张琨, 吕一河, 傅伯杰, 等. 黄土高原植被覆盖变化对生态系统服务影响及其阈值. 地理学报, 2020, 75(5): 949-960.
摘要
黄土高原是退耕还林工程的核心区域,是中国生态恢复成效最显著的区域。明确黄土高原植被恢复对生态系统服务的影响,识别植被影响的阈值效应,是学术研究和管理实践共同的需求。然而,目前相关研究仍存在研究空缺,特别是在区域尺度对生态系统服务随植被变化阈值进行识别的研究较少。本文选择植被覆盖度(FVC)为指标表征2000—2015年黄土高原植被恢复情况,以土壤保持服务、产水服务和碳固定服务为指标表征研究区生态系统服务情况,对二者的时空变化及交互作用进行分析,评估植被覆盖变化对生态系统服务的影响,并对影响的阈值进行定量识别。结果显示:① 2000—2015年黄土高原植被显著恢复;生态系统服务变化差异明显,碳固定服务明显增强,土壤保持服务得到一定改善,产水服务较为稳定。② 植被覆盖变化与生态系统服务变化的相关程度存在差异,植被覆盖与碳固定服务的关联性最强,其次为土壤保持服务。③ 植被覆盖增加能够促进区域生态系统服务总体提升,但促进作用存在阈值效应。植被覆盖影响的阈值在林地区、林地—草地区、草地区和草地—沙漠区分别为44%、32%、34%和34%,超过上述阈值,植被覆盖增加的促进作用趋于减弱。
[ZHANG K, LYU Y H, FU B J, et al. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geographica Sinica, 2020, 75(5): 949-960.]

The Loess Plateau is the core region of the "Green to Grain" Program, which makes it become the most successful example of ecological restoration in China. It is the common demand of both academic research and management practice to analyze the effects of vegetation restoration on ecosystem service and identify the threshold effects of vegetation restoration. However, there still is a research gap in related studies, especially for the thresholds of vegetation in the ecosystem service change at regional scale. In this study, we chose the fractional vegetation cover (FVC) as an index to indicate the vegetation coverage change in the Loess Plateau in 2000-2015, and took soil conservation service, water yield service and carbon sequestration service as indexes to exhibit the ecosystem service changes. The spatiotemporal changes of vegetation coverage and ecosystem services and their interaction were quantitatively analyzed. On such a basis, we further assessed the effects of vegetation coverage change on ecosystem services and quantitatively identified their thresholds. The results indicated that: (1) The vegetation coverage significantly improved in 2000-2015. Meanwhile, the differences of ecosystem service changes were prominent, with the carbon sequestration service getting significant enhancement, soil conservation service getting certain improvements and the water yield service maintaining steady. (2) There are differences among the correlations between vegetation restoration and changes of ecosystem service. The correlation of vegetation coverage-carbon sequestration service was the strongest, followed by that of vegetation coverage-soil conservation service. (3) The vegetation restoration could promote the improvement of the overall level of regional ecosystem service. Furthermore, we revealed the threshold effect in the promotion. The threshold occurrence resulted in the decrease of promotion efficiency of vegetation restoration, with vegetation coverage reaching 44%, 32%, 34% and 34% in forest zone, forest-grass zone, grass zone and grass-desert zone, respectively.

[16]
刘国彬, 上官周平, 姚文艺, 等. 黄土高原生态工程的生态成效. 中国科学院院刊, 2017, 32(1): 11-19.
[LIU G B, S HANGGUAN Z P, YAO W Y, et al. Ecological effects of soil conservation in Loss Plateau. Bulletin of Chinese Academy of Sciences, 2017, 32(1): 11-19.]
[17]
国家发展改革委, 水利部, 农业部, 国家林业局. 黄土高原地区综合治理规划大纲(2010—2030年). http://www.gov.cn/zwgk/2011-01/17/content_1786454.htm, 2010-12-30.
[National Development and Reform Commission, Ministry of Water Resources, Ministry of Agriculture, State Forestry Administration. Planning Outline for Comprehensive Governance of the Loess Plateau Region (2010-2030). http://www.gov.cn/zwgk/2011-01/17/content_1786454.htm, 2010-12-30.]
[18]
JIAPAER G L, XI C, ANMING B. A comparison of methods for estimating fractional vegetation cover in arid regions. Agricultural and Forest Meteorology, 2011, 12(151): 1698-1710.
[19]
申嘉澍, 李双成, 梁泽, 等. 生态系统服务供需关系研究进展与趋势展望. 自然资源学报, 2021, 36(8): 1909-1922.
[SHEN J S, LI S C, LIANG Z, et al. Research progress and prospect for the relationships between ecosystem services supplies and demands. Journal of Natural Resources, 2021, 36(8): 1909-1922.]
[20]
柳冬青, 曹二佳, 张金茜, 等. 甘肃白龙江流域水源涵养服务时空格局及其影响因素. 自然资源学报, 2020, 35(7): 1728-1743.
[LIU D Q, CAO E J, ZHANG J Q, et al. Spatiotemporal pattern of water conservation and its influencing factors in Bailongjiang Watershed of Gansu. Journal of Natural Resources, 2020, 35(7): 1728-1743.]
[21]
XIAO Y, OUYANG Z Y. Spatial-temporal patterns and driving forces of water retention service in China. Chinese Geographical Science, 2019, 29(1): 100-111.
[22]
HARGREAVES G H, SAMANI Z A. Reference crop evapotranspiration from temperature. American Society of Agricultural and Biological Engineers, 1985, 1(2): 96-99.
[23]
周文佐, 刘高焕, 潘剑君. 土壤有效含水量的经验估算研究: 以东北黑土为例. 干旱区资源与环境, 2003, 17(4): 88-95.
[ZHOU W Z, LIU G H, PAN J J. Soil available water capacity and it's empirical and statistical models. Journal of Arid Land Resources and Environment, 2003, 17(4): 88-95.]
[24]
刘家福, 蒋卫国, 占文凤, 等. SCS模型及其研究进展. 水土保持研究, 2010, 17(2): 120-124.
[LIU J F, JIANG W G, ZHAN W F, et al. SCS model and its research progress. Research of Soil and Water Conservation, 2010, 17(2): 120-124.]
[25]
WISCHMEIER W H, SMITH D D. Predicting Rainfall Erosion Losses. A guide to Conservation Planning. Washington, DC, USA: U.S. Department of Agriculture, 1978.
[26]
章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究. 地理科学, 2002, 22(6): 20-23.
[ZHANF W B, XIE Y, LIU B Y. A method for calculating rainfall erosivity using daily rainfall. Scientia Geographica Sinica, 2002, 22(6): 20-23.]
[27]
WILLIAMS J R. The erosion-productivity impact calculator (EPIC) model: A case history. Philosophical Transactions of the Royal Society Biological Sciences, 1990, 329(1255): 421-428.
[28]
LIU B Y, NEARING M A, RISSE L M. Slope gradient effects on soil loss for steep slopes. Transactions of the ASAE, 1994, 37(6): 1835-1840.
[29]
蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息IDRISI预测小流域土壤侵蚀量的研究. 水土保持学报, 2000, 14(2): 22-24.
[CAI C F, DING S W, SHI Z H, et al. Application of USLE model and geographic information IDRISI to predict soil erosion in small watersheds. Journal of Soil and Water Conservation, 2000, 14(2): 22-24.]
[30]
巩国丽, 刘纪远, 邵全琴. 基于RWEQ的20世纪90年代以来内蒙古锡林郭勒盟土壤风蚀研究. 地理科学进展, 2014, 33(6): 825-834.
摘要
土壤风蚀是中国北方地区重要的生态环境问题。锡林郭勒盟位于中国干旱、半干旱地区,是中国北方典型风蚀区,其特殊的地理位置又使得本区成为华北重要的生态屏障,为此锡林郭勒盟全区均划入了京津风沙源治理工程区。为了更好地阐明锡林郭勒盟的土壤风力侵蚀过程,指导区域的荒漠化防治,,基于气象、遥感数据,利用RWEQ模型定量分析了20 世纪90 年代以来锡林郭勒盟的土壤风蚀时空格局,揭示土壤风蚀的主要影响因素。研究表明:锡林郭勒盟多年平均土壤风蚀量为3.39 亿t。土壤风蚀强度以微度和轻度为主,主要集中在植被较好,风蚀力较低,降雨量较高,雪被覆盖地表时间较长的东、中部地区以及南部地区。侵蚀强度为中度以上的侵蚀区集中在苏尼特右旗、正镶白旗和正蓝旗的浑善达克沙地;90 年代以来,锡林郭勒盟的土壤风蚀强度总体上呈减弱趋势,主要与风场强度的减弱,植被盖度等的变化有关。土壤风蚀多发生于风蚀力较大的春季,风蚀强度较大区域的春季植被盖度与风蚀量呈显著负相关(r>0.7,p<0.01),且近20 年植被盖度提升有效降低了该区域的土壤风蚀。
[GONG G L, LIU J Y, SHAO Q Q. Wind erosion in Xilingol League, Inner Mongolia since the 1990s using the Revised Wind Erosion Equation. Progress in Geography, 2014, 33(6): 825-834.]
Soil wind erosion is a major ecological environment problem in northern China. Xilingol League is located in the arid and semiarid areas. As one of the areas suffering from most serious wind erosion in northern China, its ecological environment is very fragile. Because of this environmental fragility, the area was included in the Beijing-Tianjin Dust Storms Sources Control Project that was officially approved by The State Council and implemented in 2002. In order to better understand the status of soil erosion and guide the regional desertification prevention, it is necessary to assess the variation of soil erosion and reveal the influences of weather and vegetation on soil erosion in Xilingol. In this study, based on wind speed, temperature, precipitation and other meteorology data, the normalized difference vegetation index, snow coverage and other remote sensing data, the Revised Wind Erosion Equation (RWEQ), which takes Newton's first law of motion as the foundation, was applied to evaluate annual soil losses caused by wind erosion. The results show that: The average soil erosion in Xilingol League between 1990 and 2010 was 0.34 billion tons. The intensity of soil wind erosion is low in most parts of Xilingol—these areas were mainly concentrated in the eastern, central and southern areas, where vegetation coverage is higher, wind erosion forces is lower, and rainfall is abundant. The areas with medium and higher intensity of erosion were mainly distributed in the Hunshandac desert of Suninteyou Banner, Zhengxiangbai Banner and Zhenglan Banner, where the soil is highly prone to wind erosion. Since the 1990s, soil erosion in Xilingol showed a deceasing trend. The reduction of wind erosion intensity is related to the weakened wind energy and improved vegetation cover. Wind erosion forces is the main driving factor of wind erosion—soil erosion was significantly correlated with the wind erosion forces (<i>r</i>=0.95, <i>p</i><0.05). Wind erosion in Xilingol occurred frequently in windy springs. At this time, the effect of soil erosion associated with low vegetation coverage is most significant. Soil erosion was significantly correlated with the spring vegetation coverage in regions of higher wind erosion forces (<i>r</i>>0.7, <i>p</i><0.01). Increased vegetation coverage effectively reduced soil wind erosion of the region in the recent 20 years. Low vegetation coverage makes the prevention of soil erosion more difficult and improving the grassland condition, especially in the spring season, is the key to controlling wind erosion of the soil. The RWEQ model was mainly used in the farmlands of the United States and cannot be directly applied in the grassland areas of China. In order to better apply the model in grasslands, the soil particle content was converted into the US system, surface roughness was measured by the roller chain method and withered vegetation coverage (obtained by photos) was introduced to replace flat residues on the surface of the soil. Even so, more research is needed to solve problems such as the influence of relief on soil wind erosion, the determination of noneroding boundaries, among others.
[31]
FRYREAR D W, BILBRO J D, SALEH A, et al. RWEQ: Improved wind erosion technology. Journal of Soil and Water Conservation, 2000, 55(2): 183-189.
[32]
SALEH A. Soil roughness measurement: Chain method. Journal of Soil and Water Conservation, 1993, 48(6): 527-529.
[33]
王佃来, 刘文萍, 黄心渊. 基于Sen+Mann-Kendall的北京植被变化趋势分析. 计算机工程与应用, 2013, 49(5): 13-17.
摘要
基于1998年到2011年长时序SPOT VEGETATION归一化植被指数数据,采用一元线性回归斜率变化法和Sen+Mann-Kendall法对北京地区的植被变化趋势做了时空分析。实验结果表明:在1998年到2011年期间,北京市城区、延庆县、怀柔区和平谷区的植被变化趋势显著上升;而植被恶化区则集中在北京市城区北部、东部和南部,并以马蹄形包围北京市区。两种方法实验结果在植被上升(下降)区域具有一致性。同时,Sen+Mann-Kendall法以其良好的抗噪性和对数据分布无要求性可广泛应用到其他区域的植被变化趋势分析中。
[WANG D L, LIU W P, HUANG X Y. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method. Computer Engineering and Applications, 2013, 49(5): 13-17.]
The spatial distribution and dynamic change of vegetation cover in Beijing are analyzed based on SPOT VEGETATION&rsquo;s NDVI data from 1998 to 2011 using the method of slope of linear regression and Sen+Mann-Kendallanalysis. Experimental results show that the vegetation&rsquo;s change is significantly increased in the following areas:the urban of Beijing city, Yanqing county, Huairou and Pinggu district. On the contrary, the vegetation&rsquo;s decreasing areas locate at the north, east and south of the urban district in Beijing and surround like a Horseshoe-shaped. The two methods &rsquo;sresults have good spatial consistency in increasing(or decreasing) vegetation coverregions. Sen+Mann-Kendall analysis can be widely applied in other areas for detecting the trends of vegetation&rsquo;s change thanks to its noise immunity and without requirements of data distribution.
[34]
GOCIC M, TRAJKOVIC S. Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Global & Planetary Change, 2013, 100: 172-182.
[35]
邵全琴, 刘树超, 宁佳, 等. 2000—2019年中国重大生态工程生态效益遥感评估. 地理学报, 2022, 77(9): 2133-2153.
摘要
本文提出了重大生态工程实施生态效益评估理论框架,在选取生态系统宏观结构、生态系统质量和生态系统服务3大类、6个一级指标和9个二级指标的基础上,利用地面和遥感数据,结合模型模拟,生成了2000&#x02014;2019年长时间序列评估指标参数数据集,定量评估了中国重大生态工程实施20年后的生态效益。结果表明:生态恢复程度中等、较高和高的区域面积分别占全国国土面积的24.1%、11.9%和1.7%,生态工程实施数量越多的地区,生态恢复程度越高,生态恢复程度较高和高的区域主要集中在黄土高原、北方农牧交错带、东北平原、川滇黔渝湘结合部等地区;气候因素和生态工程对植被净初级生产力变化的贡献率分别为85.4%和14.6%,对水蚀模数变化的贡献率分别为69.5%和30.5%;中国植被覆盖度有20%的恢复潜力,森林植被覆盖度恢复潜力为6.4%,草地植被覆盖度恢复潜力为23%;气候条件是生态恢复的重要限制因素,生态恢复程度较高和高的区域主要分布在年均温大于0 ℃和年降水量大于300 mm的地区。因此,重大生态工程的部署,应充分考虑气候条件的限制性,避免实施单一生态工程或单一生态恢复措施,充分发挥生态工程组合措施的综合效应,提高生态投入资金的最大效益。
[SHAO Q Q, LIU S C, NING J, et al. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geographica Sinica, 2022, 77(9): 2133-2153.]

We propose a theoretical framework for assessing the ecological benefits provided by national key ecological projects in China over the past 20 years. A dataset consisting of six primary indicators and nine secondary indicators of ecosystem structure, ecosystem quality, and ecosystem services for the period 2000-2019 was generated using ground survey and remote sensing data. Ecological benefits were quantitatively evaluated following the implementation of national key ecological projects in China. Areas with medium, relatively high, and high degrees of ecological restoration accounted for 24.1%, 11.9%, and 1.7% of the national land area, respectively. Degrees of ecological restoration were higher in areas with a greater number of ecological projects. Areas with relatively high and high degrees of ecological restoration were mainly concentrated in the Loess Plateau, the farming-pastoral zone of northern China, the Northeast China Plain, and an area spanning the border areas of Sichuan, Yunnan, Guizhou, Chongqing, and Hunan. The relative contributions of climatic factors and ecological projects to changes in vegetation net primary productivity were 85.4% and 14.6%, respectively, and the relative contributions of climatic factors and ecological projects to changes in water erosion modulus were 69.5% and 30.5%, respectively. The restoration potential of national vegetation coverage was 20%, and the restoration potential percentages of forest and grassland vegetation coverage were 6.4% and 23%, respectively. Climatic conditions can inhibit ecological restoration. Areas with relatively high and high degrees of ecological restoration were mainly distributed in areas with an annual average temperature greater than 0 ℃ and annual precipitation greater than 300 mm. Therefore, the limitations associated with climate conditions should be considered during the implementation of national ecological projects. The implementation of single ecological projects or single ecological restoration measures should be avoided, the use of combined measures should be emphasized, and the benefits of ecological investment funds should be maximized.

[36]
赵一蕾, 黄文婕, 曹明, 等. 1961—2019年黄土高原植被潜在蒸散及影响因子. 环境科学研究, 2021, 34(9): 2208-2219.
[ZHAO Y L, HUANG W J, CAO M, et al. Potential evapotranspiration and influence factor of vegetation in Loss Plateau from 1961 to 2019. Research of Environmental Sciences, 2021, 34(9): 2208-2219.]
[37]
LIU M, JIA Y, ZHAO J, et al. Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of Northern China in recent 20 years. Science of the Total Environment, 2021, 20: 147.
[38]
汪晓珍, 吴建召, 吴普侠, 等. 2000—2015年黄土高原生态系统水源涵养、土壤保持和NPP服务的时空分布与权衡/协同关系. 水土保持学报, 2021, 35(4): 114-121, 128.
[WANG X Z, WU J Z, WU P X, et al. Spatial and temporal distribution and trade-off water conservation, soil conservation and NPP services in the ecosystems of the Loss Plateau from 2000 to 2015. Journal of Soil and Water Conservation, 2021, 35(4): 114-121, 128.]
[39]
陈卓鑫, 王文龙, 郭明明, 等. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响. 自然资源学报, 2020, 35(2): 387-398.
[CHEN Z X, WANG W L, GUO M M, et al. Effects of vegetation restoration on soil erodibility on different geomorphological locations in the loess-tableland and gully region of the Loess Plateau. Journal of Natural Resources, 2020, 35(2): 387-398.]
[40]
刘旻霞, 赵瑞东, 邵鹏, 等. 近15 a黄土高原植被覆盖时空变化及驱动力分析. 干旱区地理, 2018, 41(1): 99-108.
[LIU M X, ZHAO R D, SHAO P, et al. Temporal and spatial variation of vegetation coverage and its driving forces in the Loss Plateau from 2001 to 2015. Arid Land Geography, 2018, 41(1): 99-108.]
[41]
杨磊, 冯青郁, 陈利顶. 黄土高原水土保持工程措施的生态系统服务. 资源科学, 2020, 42(1): 87-95.
摘要
黄土高原严重的水土流失是黄河泥沙的主要来源。自1950s以来大规模实施的水土保持工程建设是黄土高原水土流失治理的重要举措,在减少入黄泥沙方面做出了巨大贡献。水土保持工程措施通过直接或间接地作用于坡面、沟道的水文过程和物质迁移过程等,改变了水资源和土壤资源的时空分配格局,在土壤保持、粮食供给、水文调节等方面发挥了重要作用,对黄河流域生态安全具有重要贡献。本文系统综述了黄土高原水土保持工程措施的发展演变,阐述了水土保持工程措施对水土过程的作用机制及对关键生态系统服务的贡献,探讨了新形势下黄土高原水土保持工程措施建设面临的问题、挑战。在此基础上提出今后黄土高原水土保持工程措施应加强维护和管理,提升应对极端气候事件和自然灾害的能力,面向国家生态文明建设和区域社会经济发展需求,统筹工程措施与植被措施,进行科学的设计与合理的时空配置,以维护黄土高原及黄河流域生态安全、维持和提升区域生态系统服务功能及社会经济效益。
[YANG L, FENG Q Y, CHEN L D. Ecosystem services of soil and water conservation measures on the Loess Plateau. Resources Science, 2020, 42(1): 87-95.]

Serious soil losses on the Loess Plateau are the main source of sediments in the Yellow River. Large-scale implementation of soil and water conservation measures since the 1950s is one of the key actions for decreasing soil and water losses in this region. Soil and water conservation measures can modify hydrological processes and soil loss processes on hillslopes or in channels by changing hydrological pathway, runoff velocity, and sediment transportation, and then change the spatial and temporal distribution of water and soil resources at corresponding scales. Different types of soil and water conservation measures played substantial roles in sediment trapping, hydrological adjustment, and regional food security maintenance on the Loess Plateau during the past decades. Soil and water conservation measures have a substantial contribution in reducing the sediment loads of the Yellow River, and are important for maintaining ecological security in the Yellow River Basin. This study aimed at (1) systematically summarizing the types and development of soil and water conservation measures on the Loess Plateau for the past seven decades; (2) revealing the effects of soil and water conservation measures on hydrological and soil processes and related critical ecosystem services and underlying mechanisms at multiple spatial scales; and (3) presenting the problems, challenges, and future prospects of soil and water conservation measures on the Loess Plateau. It is suggested that implementation of soil and water conservation measures on the Loess Plateau in the future needs to focus on their maintenance and improvement toward integrated benefits, strengthen their resilience to extreme climate events and natural hazard-induced disasters, and balance tradeoffs among social-economic-ecological benefits. Improvement in the effectiveness of soil and water conservation measures can help maintaining ecological security and enhancing regional ecosystem functions of the Loess Plateau.

[42]
李婷, 吕一河, 任艳姣, 等. 黄土高原植被恢复成效及影响因素. 生态学报, 2020, 40(23): 8593-8605.
[LI T, LYU Y H, REN Y J, et al. Gauging the effectiveness of vegetation restoration and the influence factors in the Loess Plateau. Acta Ecologica Sinica, 2020, 40(23): 8593-8605.]
[43]
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72(5): 863-874.
摘要
黄土高原从1999年开始大规模退耕还林(草),植被覆盖发生了较大变化,对黄土高原植被恢复现状和恢复潜力进行评估具有重要意义。本文使用1999-2013年SPOT VEG NDVI数据,采用线性回归、Hurst指数分析法、统计学方法以及地理空间分析技术,对黄土高原植被恢复状况和潜力进行了探讨。结论主要为:① 1999年退耕还林(草)以来,黄土高原植被覆盖度呈显著上升趋势,黄土高原三分之二地区的植被将会持续改善;② 植被响应曲线分析表明,黄土区植被覆盖度和干旱指数呈显著的指数关系,且缓坡相关性大于陡坡。土石山区植被响应函数为线性函数,相关系数下降;③ 整个黄土高原地区平均植被恢复潜力为69.75%。植被恢复潜力值东南高而西北低,黄土高原东南地区植被恢复状况较好,其植被恢复潜力指数较小,而植被恢复潜力指数较高的地区主要为北方风沙区及西部丘陵沟壑区;④ 不同降水量条件下,植被恢复速度差别显著,其中降水量在375~575 mm之间的地区,植被恢复最快。植被恢复措施应该“因水制宜”,避免因造林带来的土壤干化加剧。研究结果以期为黄土高原生态文明建设提供科学支撑。
[GAO H D, PANG G W, LI Z B, et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72(5): 863-874.]

The "Grain for Green" project has been initiated in the Loess Plateau since 1999, and would be continuously promoted in the future. Therefore, it is of important significance to assess the vegetation restoration and its potential in the Loess Plateau. In this paper, based on the SPOT VEG NDVI dataset, the trend analysis, Hurst exponent method, statistical methods and geographical spatial analysis technology were adopted. Results showed that NDVI from 1999 to 2013 had a significant upward trend and the vegetation of 2/3 of the area would continue to improve. In loessal areas, the analysis of vegetation response curve indicated that vegetation coverage had a significant exponential relationship with drought index. Such relationship of gentle slope was more obvious than that of steep slope. The best vegetation response function of soil and rock-mountainous areas was linear function. Its correlation coefficient was lower than that of loessal areas. In the future, the average vegetation restoration potential of the Loess Plateau could reach 69.75%, which was high in the southeast and low in the northwest of the plateau. The region with better vegetation restoration would have lower vegetation restoration potential index. The vegetation restoration potential was mainly concentrated in the northern sandy land as well as in the western hilly and gully area. Subsequently, the differences of vegetation restoration rate for this region under different precipitation thresholds were remarkable, among which the area with precipitation of 375-450 mm had fast vegetation restoration. The measures "adaptation to water conditions" should be taken so as to avoid soil drying for afforestation. The results provided scientific support for the construction of ecological civilization on the Loess Plateau.

[44]
赵广举, 穆兴民, 田鹏, 等. 黄土高原植被变化与恢复潜力预测. 水土保持学报, 2021, 35(1): 205-212.
[ZHAO G J, MU X M, TIAN P, et al. Prediction of vegetation variation and vegetation restoration potential in the Loss Plateau. Journal of Soil and Water Conservation, 2021, 35(1): 205-212.]
[45]
潘梅, 陈天伟, 黄麟, 等. 京津冀地区生态系统服务时空变化及驱动因素. 生态学报, 2020, 40(15): 5151-5167.
[PAN M, CHEN T W, HUANG L, et al. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji Region. Acta Ecologica Sinica, 2020, 40(15): 5151-5167.]
[46]
FU S H, LIU B Y, LIU H P, et al. The effect of slope on in Terrill erosion at short slopes. Catena, 2011, 84(1-2): 29-34.
[47]
KATEB H E, ZHANG H, ZHANG P, et al. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi province, China. Catena, 2013, 105(2): 1-10.

基金

中国科学院战略性先导科技专项项目(XDA23100203)
国家重点研发计划项目(2017YFC0506500)
PDF(9302 KB)

5914

Accesses

0

Citation

Detail

段落导航
相关文章

/