
长三角碳排放空间关联网络结构特征及演化机制
Structural characteristics and evolutionary mechanism of spatial correlation network of carbon emissions in the Yangtze River Delta
基于长三角41个城市数据,以引力模型构建长三角碳排放空间关联网络,利用社会网络分析方法和动态指数随机图模型(TERGM)识别网络的结构特征及演化机制。结果发现:(1)长三角碳排放空间关联日益密切,网络复杂性和稳定性日益提升,但仍存在较大合作潜力;(2)安徽和江苏北部城市构成净溢出板块,上海和江苏南部城市构成净受益板块,省际交界地带和浙江省内城市构成经纪人板块,板块间存在较多双向溢出渠道,且板块内存在“俱乐部”集聚现象;(3)“经纪人”连接结构和核心节点主导连接结构在网络演化中发挥了关键作用,网络演化由链式结构驱动向闭合式结构驱动发展,但城市间以邻为壑的发展策略阻碍了合作减排;(4)互惠性等内生结构有助于网络的形成,对外开放等行为者—关系能力则需通过市场调节等四种机制来促进网络演化,该网络的演化兼具路径依赖和路径创造特征。
Based on the data of 41 cities in the Yangtze River Delta (YRD), the gravity model is used to construct a spatial correlation network of carbon emissions. Social network analysis methods and the Temporal Exponential Random Graph Model (TERGM) are used to identify the structural characteristics and evolution mechanisms of the network. The findings are as follows: (1) The spatial association of carbon emissions in the YRD is becoming increasingly close, with enhanced network complexity and stability, yet the relatively low network density indicates significant potential for future cooperation. (2) Cities in Anhui and Northern Jiangsu constitute the net overflow plate, while Shanghai and cities in Southern Jiangsu form the net benefit plate. The interprovincial border areas and cities within Zhejiang constitute the broker plate. There are multiple bidirectional spillover channels among these plates, with evidence of "club" clustering within each plate. (3) The "broker" connectivity structure and the dominant connectivity structure of core nodes have played a crucial role in the evolution of the spatial correlation network of carbon emissions in the study area. The network evolution has transitioned from a chain-like structure driven development to a closed-loop structure driven development. However, the non-cooperative game strategy of prioritizing self-interest among cities has diminished the potential for cooperative emission reduction. (4) The endogenous structures of reciprocity, connectivity, and circularity contribute to the formation of the spatial correlation network of carbon emissions in the YRD region. The abilities of actors, such as external openness, industrial structure, green technological innovation, digital economic development, energy intensity, environmental regulations, and carbon sink pressure, require the mechanisms of resource endowment differentiation, market regulation, government macro-control, and technological innovation promotion to facilitate network evolution. The evolution of this network exhibits characteristics of both path dependence and path creation.
长三角 / 碳排放 / 空间关联网络 / TERGM / 社会网络分析 / 演化机制 {{custom_keyword}} /
Yangtze River Delta / carbon emissions / spatial relational network / TERGM / social network analysis / evolutionary mechanisms {{custom_keyword}} /
表1 空间关联网络板块分类标准Table 1 Classification standards for spatial association network blocks |
板块实际内部关系比例 (板块对内溢出关系数与总溢出关系数之比) | 板块接收关系比例 (板块接收板块外关系数与对外溢出关系数之比) | |
---|---|---|
≈0 | >0 | |
≥(gk-1)/(G-1) | 双向溢出板块 | 净受益板块/主受益板块 |
<(gk-1)/(G-1) | 净溢出板块 | 经纪人板块 |
注:gk表示板块中的成员个数(个),G表示网络中的成员总数(个),(gk-1)/(G-1) 表示期望内部关系比例。 |
表2 主要变量及其含义Table 2 Main variables and their meanings |
变量 | 格局 | 描述 | |
---|---|---|---|
结构依 赖效应 | 边数(edges) | ![]() | 网络密度的间接反映,是关系形成的基准倾向 |
互惠性(mutual) | ![]() | 彼此交互发出关联关系,形成互惠关系的倾向 | |
连通性(twopath) | ![]() | 测度i→j且j→k类型的内生网络结构变量对网络形成的影响 | |
循环性(ctriple) | ![]() | 测度i→j、j→k且k→i类型的内生网络结构变量对网络形成的影响 | |
时间依 赖效应 | 稳定性(stability) | ![]() | t期整体网络格局在t+1期保持稳定的趋势 |
变异性(variability) | ![]() | t期的整体网络格局在t+1期发生变异的趋势,即关系的新增或消失 | |
行为者— 关系效应 | 发送者效应(nodeocov) | ![]() | 测度节点城市的某个属性(m)对城市间碳排放发出关系的影响 |
接收者效应(nodeicov) | ![]() | 测度节点城市的某个属性(m)对城市间碳排放接收关系的影响 | |
异配性(absdiff) | ![]() | 测度节点城市间某个属性(m)的差异对网络形成的影响 | |
网络嵌 入效应 | 协网络(edgecov) | ![]() | 测度某个外部环境因素(n)对网络形成的影响 |
表3 行为者—关系效应解释变量Table 3 Explanatory variables of actor-relation effects |
变量 | 影响路径 | 衡量方式 |
---|---|---|
对外开放(FDI) | 污染天堂[35]:对外开放→高碳产业转移→邻近地区碳排放增长→碳关联 污染光环[36]:对外开放→技术溢出→抑制区域间碳排放→碳关联 | 当年实际使用外资金额占GDP比例 |
产业结构(sind) | 产业结构差异→区域间产业转移[20]/贸易活动[26]→碳关联 | 工业增加值占GDP比例 |
绿色技术创新(ln_tech) | 绿色技术创新合作→碳排放联控→空间溢出效应[37]→碳关联 | 绿色专利产出数量,参考文献 [38] |
数字经济发展(digital) | 数字化→强化要素流动和环境治理联系→降低本地和邻地碳排放[39]→碳关联 | 主成分分析法,参考文献 [40] |
能源强度(energy) | 碳排放强度不均衡[41]→区域协调发展措施→节能减排合作→碳关联 | 夜间灯光数据模拟测度,参考文献 [42] |
环境规制(reg) | 环境规制差异→污染企业转向低环境规制地区排污[43]→碳关联 | 熵值法,参考文献 [44] |
碳汇压力(sink) | 碳汇空间分布→地区碳排放压力→高碳产业转移到碳汇丰富地区→碳关联 碳汇交易→高碳排放地区向碳汇丰富地区进行自愿减排→碳关联 | 单位建成区面积承载的植被碳固存量的倒数,参考文献[45] |
表4 长三角碳排放空间关联板块溢出效应Table 4 Spillover effects of the spatial correlation network of carbon emissions in the Yangtze River Delta |
板块类型 | 2005年 | 2020年 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
板块Ⅰ | 板块Ⅱ | 板块Ⅲ | 板块Ⅳ | 板块Ⅰ | 板块Ⅱ | 板块Ⅲ | 板块Ⅳ | |||
总溢出关系个数/个 | 板块内部 | 16 | 3 | 35 | 12 | 19 | 2 | 33 | 3 | |
板块外部 | 43 | 28 | 176 | 54 | 51 | 43 | 173 | 82 | ||
总接收关系个数/个 | 板块内部 | 16 | 3 | 35 | 12 | 19 | 2 | 33 | 3 | |
板块外部 | 158 | 79 | 25 | 39 | 205 | 48 | 21 | 75 | ||
期望内部关系比例/% | 12.50 | 7.50 | 50.00 | 22.50 | 17.50 | 7.50 | 45.00 | 22.50 | ||
实际内部关系比例/% | 27.12 | 9.68 | 16.59 | 18.18 | 27.14 | 4.44 | 16.02 | 3.53 |
表5 2005—2020年长三角碳排放空间关联网络模体分析Table 5 Analysis of motif in the spatial correlation network of carbon emissions in the Yangtze River Delta from 2005 to 2020 |
结构 | 2005年 | 2010年 | 2015年 | 2019年 | 2020年 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
编号 | 模体 | 频次/% | 编号 | 模体 | 频次/% | 编号 | 模体 | 频次/% | 编号 | 模体 | 频次/% | 编号 | 模体 | 频次/% | |||||
三元结构 | 164 | ![]() | 28.05 | 164 | ![]() | 29.07 | 164 | ![]() | 27.08 | 166 | ![]() | 7.22 | 6 | ![]() | 9.67 | ||||
6 | ![]() | 8.11 | 6 | ![]() | 7.89 | 166 | ![]() | 5.64 | 46 | ![]() | 2.60 | 14 | ![]() | 5.46 | |||||
46 | ![]() | 2.63 | 46 | ![]() | 3.66 | 46 | ![]() | 3.00 | 238 | ![]() | 1.35 | 12 | ![]() | 2.22 | |||||
12 | ![]() | 2.03 | 12 | ![]() | 1.47 | 238 | ![]() | 1.02 | 12 | ![]() | 0.58 | 238 | ![]() | 1.04 | |||||
238 | ![]() | 0.80 | 238 | ![]() | 0.95 | 12 | ![]() | 0.37 | / | / | / | / | / | / | |||||
四元结构 | 18568 | ![]() | 19.76 | 18568 | ![]() | 17.06 | 18568 | ![]() | 19.28 | 18636 | ![]() | 4.01 | 2184 | ![]() | 16.68 | ||||
4380 | ![]() | 6.32 | 4380 | ![]() | 6.78 | 2202 | ![]() | 3.82 | 2202 | ![]() | 3.51 | 204 | ![]() | 4.30 | |||||
204 | ![]() | 3.81 | 2202 | ![]() | 3.61 | 18636 | ![]() | 3.13 | 588 | ![]() | 2.75 | 2202 | ![]() | 3.04 | |||||
588 | ![]() | 3.13 | 588 | ![]() | 3.38 | 588 | ![]() | 2.65 | 27340 | ![]() | 1.61 | 588 | ![]() | 2.78 | |||||
2202 | ![]() | 2.78 | 204 | ![]() | 2.27 | 18518 | ![]() | 1.43 | 18518 | ![]() | 1.20 | 18636 | ![]() | 2.46 |
表6 长三角碳排放空间关联网络的TERGM实证结果Table 6 Empirical results of the TERGM for the spatial correlation network of carbon emissions in the Yangtze River Delta |
变量 | 模型1 | 模型2 | 模型3 | 模型4 | |
---|---|---|---|---|---|
结构依赖性 | edges | 8.08*[8.08; 6.46] | 5.15*[5.11; 3.60] | 7.16*[7.23; 5.71] | 3.09*[3.28; 0.19] |
mutual | 3.03*[3.04; 2.87] | 3.42*[3.43; 3.27] | 2.62*[2.58; 2.10] | ||
twopath | -0.00*[-0.01; -0.02] | -0.01*[-0.02; -0.04] | |||
ctriple | -0.46*[-0.46; -0.51] | -0.32*[-0.32; -0.41] | |||
时间依赖性 | stability | 2.65*[2.71; 2.27] | |||
variability | -0.09*[-0.11; -0.23] | ||||
发送者属性 | FDI | -9.39*[-9.54; -11.12] | -7.93*[-8.19; -11.24] | -5.87*[-6.02; -7.79] | -5.76*[-6.20; -11.04] |
sind | -1.70*[-1.69; -2.14] | -3.12*[-3.16; -3.59] | -2.49*[-2.53; -2.97] | -1.36*[-1.42; -2.32] | |
ln_tech | -0.19*[-0.19; -0.27] | -0.45*[-0.45; -0.55] | -0.38*[-0.37; -0.48] | -0.16*[-0.12; -0.23] | |
digital | -0.43*[-0.43; -0.56] | -0.48*[-0.49; -0.67] | -0.42*[-0.43; -0.53] | -0.06*[-0.09; -0.35] | |
energy | -0.10*[-0.12; -0.66] | 0.11*[0.08; -0.43] | 0.26*[0.22; -0.28] | 0.35*[0.28; -0.42] | |
reg | 0.08*[0.07; -0.16] | -0.15*[-0.14; -0.32] | 0.48*[0.48; 0.27] | 0.10*[0.08; -0.28] | |
sink | -2.09*[-2.15; -2.72] | -1.94*[-1.96; -2.44] | -1.29*[-1.32; -1.78] | -0.34*[-0.34; -1.47] | |
接收者属性 | FDI | -5.14*[-5.09; -9.48] | -3.00*[-3.11; -8.55] | -2.90*[-2.90; -8.38] | -0.64*[-0.64; -7.19] |
sind | 4.38*[4.44; 3.82] | 5.41*[5.50; 4.73] | 4.83*[4.91; 3.97] | 2.00*[1.87; -0.26] | |
ln_tech | 0.35*[0.36; 0.25] | 0.56*[0.57; 0.43] | 0.51*[0.52; 0.39] | 0.48*[0.52; 0.28] | |
digital | 0.05*[0.05; -0.16] | 0.10*[0.10; -0.17] | 0.14*[0.15; -0.12] | 0.03*[0.01; -0.38] | |
energy | -0.96*[-0.97; -1.39] | -1.14*[-1.16; -1.53] | -1.23*[-1.27; -1.80] | -0.25*[-0.31; -1.55] | |
reg | 0.50*[0.49; 0.30] | 0.47*[0.47; 0.34] | 0.81*[0.81; 0.62] | 0.26*[0.24; -0.23] | |
sink | -1.28*[-1.34; -1.92] | -0.52*[-0.56; -1.09] | -0.24*[-0.30; -0.88] | 0.13*[0.03; -1.32] | |
异配性 | FDI | 0.28*[0.44; -3.65] | 0.61*[0.58; -2.66] | -1.50*[-1.41; -5.60] | -1.42*[-1.29; -7.36] |
sind | 0.05*[0.12; -1.13] | -0.29*[-0.29; -1.26] | -0.44*[-0.40; -1.53] | 0.22*[0.43; -1.00] | |
ln_tech | 0.42*[0.41; 0.30] | 0.23*[0.24; 0.16] | 0.21*[0.21; 0.12] | 0.10*[0.10; -0.01] | |
digital | 0.61*[0.65; 0.45] | 0.54*[0.55; 0.40] | 0.45*[0.47; 0.36] | -0.04*[-0.01; -0.42] | |
energy | 1.54*[1.56; 1.17] | 1.44*[1.46; 1.14] | 1.14*[1.17; 0.80] | 0.11*[0.16; -0.59] | |
reg | 0.36*[0.36; 0.10] | 0.34*[0.33; 0.13] | 0.05*[0.05; -0.17] | 0.07*[0.09; -0.30] | |
sink | 2.25*[2.26; 1.63] | 1.74*[1.74; 1.25] | 1.50*[1.50; 1.02] | 1.07*[1.09; -0.63] | |
协网络 | mat_dist | -2.25*[-2.27; -2.37] | -1.75*[-1.76; -1.85] | -2.06*[-2.08; -2.18] | -1.03*[-1.07; -1.47] |
N/个 | 26240 | 26240 | 26240 | 24600 |
注:*表示0不在置信区间,括号中的数字表示在置信水平5%的置信区间,下同。 |
表7 稳健性检验Table 7 Robustness test |
变量 | 模型5 | 模型6 | 模型7 | 模型8 | |
---|---|---|---|---|---|
结构依赖性 | edges | 3.55*[4.30; 0.62] | 5.16*[4.88; -0.97] | 3.09*[3.36; 0.43] | 3.70*[3.88; 1.51] |
mutual | 2.80*[2.75; 2.07] | 2.83*[2.78; 2.14] | 2.62*[2.56; 2.09] | 2.74*[2.69; 2.06] | |
twopath | -0.01*[-0.02; -0.05] | -0.02*[-0.03; -0.04] | -0.01*[-0.02; -0.05] | -0.00*[-0.01; -0.04] | |
ctriple | -0.36*[-0.35; -0.46] | -0.36*[-0.36; -0.48] | -0.32*[-0.32; -0.41] | -0.30*[-0.29; -0.35] | |
时间依赖性 | stability | 2.08*[2.16; 1.72] | 1.74*[1.80; 1.54] | 2.65*[2.72; 2.29] | 2.68*[ 2.76; 2.34] |
variability | -0.35*[-0.38; -0.72] | -0.25*[-0.44; -1.15] | -0.09*[-0.11; -0.22] | -0.07*[-0.09; -0.21] | |
发送者属性 | FDI | -8.02*[-7.79; -11.41] | -5.66*[-6.38; -13.05] | -5.76*[-6.18; -11.20] | -5.63*[-6.13; -12.47] |
sind | -1.86*[-1.91; -3.02] | -1.62*[-1.56; -2.29] | -1.36*[-1.41; -2.28] | -1.12*[-1.10; -1.79] | |
ln_tech | -0.06*[-0.06; -0.25] | -0.21*[-0.11; -0.31] | -0.16*[-0.12; -0.23] | -0.22*[-0.19; -0.31] | |
digital | -0.26*[-0.25; -0.49] | -0.12*[-0.13; -0.42] | -0.06*[-0.07; -0.33] | -0.01*[-0.02; -0.29] | |
energy | 0.42*[0.02; -1.97] | 0.01*[-0.08; -1.04] | 0.35*[0.27; -0.45] | 0.22*[0.16; -0.56] | |
reg | 0.14*[0.13; -0.46] | 0.26*[0.16; -0.20] | 0.10*[0.07; -0.28] | 0.15*[0.14; -0.21] | |
sink | -0.05*[-0.10; -1.43] | -0.44*[-0.59; -2.09] | -0.34*[-0.38; -1.50] | -0.32*[-0.30; -1.30] | |
接收者属性 | FDI | -5.33*[-4.07; -8.51] | -3.40*[-3.54; -18.94] | -0.64*[-0.55; -7.49] | 1.04*[1.03; -2.21] |
sind | 2.25*[1.98; -0.34] | 3.13*[3.22; 0.63] | 2.00*[1.87; -0.18] | 0.95*[0.77; -0.85] | |
ln_tech | 0.63*[0.65; 0.38] | 0.43*[0.56; 0.28] | 0.48*[0.50; 0.26] | 0.50*[0.52; 0.30] | |
digital | 0.07*[0.04; -0.48] | 0.13*[0.09; -0.45] | 0.03*[0.01; -0.41] | -0.11*[-0.14; -0.46] | |
energy | 0.58*[0.13; -2.00] | -1.22*[-1.25; -2.55] | -0.25*[-0.35; -1.55] | -0.11*[-0.14; -1.00] | |
reg | 0.19*[0.20; -0.33] | 0.49*[0.40; 0.06] | 0.26*[0.23; -0.24] | 0.31*[0.29; -0.09] | |
sink | 0.90*[0.62; -0.22] | -0.29*[-0.61; -2.48] | 0.13*[0.02; -1.27] | 0.56*[0.54; -0.64] | |
异配性 | FDI | -0.79*[-0.93; -9.25] | -4.66*[-4.45; -12.59] | -1.42*[-1.07; -7.16] | -1.00*[-0.52; -9.31] |
sind | 0.59*[0.66; -1.60] | -0.05*[0.47; -1.82] | 0.22*[0.46; -1.04] | -0.42*[-0.12; -1.85] | |
ln_tech | 0.13*[0.11; -0.10] | 0.10*[0.12; -0.07] | 0.10*[0.10; -0.00] | 0.05*[0.05; -0.11] | |
digital | 0.21*[0.25; -0.32] | -0.00*[0.04; -0.58] | -0.04*[-0.04; -0.44] | -0.01*[0.01; -0.29] | |
energy | -0.10*[0.23; -0.75] | 0.49*[0.61; -0.26] | 0.11*[0.20; -0.54] | 0.31*[0.41; -0.70] | |
reg | 0.06*[0.06; -0.36] | -0.10*[-0.07; -0.60] | 0.07*[0.09; -0.28] | 0.10*[0.11; -0.27] | |
sink | 0.31*[0.36; -1.54] | 1.36*[1.50; -0.63] | 1.07*[ 1.17; -0.61] | 0.97*[1.01; -0.15] | |
协网络 | mat_dist | -1.31*[-1.34; -1.63] | -1.19*[-1.26; -1.73] | -1.03*[-1.07; -1.49] | -1.02*[-1.06; -1.40] |
N/个 | 11480 | 8200 | 24600 | 24600 |
[1] |
高国力, 文扬, 王丽, 等. 基于碳排放影响因素的城市群碳达峰研究. 经济管理, 2023, 45(2): 39-58.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
郑长德, 刘帅. 基于空间计量经济学的碳排放与经济增长分析. 中国人口·资源与环境, 2011, 21(5): 80-86.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
In this study, we adopt kernel density estimation, spatial autocorrelation, spatial Markov chain, and panel quantile regression methods to analyze spatial spillover effects and driving factors of carbon emission intensity in 283 Chinese cities from 1992 to 2013. The following results were obtained. (1) Nuclear density estimation shows that the overall average carbon intensity of cities in China has decreased, with differences gradually narrowing. (2) The spatial autocorrelation Moran’s I index indicates significant spatial agglomeration of carbon emission intensity is gradually increasing; however, differences between regions have remained stable. (3) Spatial Markov chain analysis shows a Matthew effect in China’s urban carbon emission intensity. In addition, low-intensity and high-intensity cities characteristically maintain their initial state during the transition period. Furthermore, there is a clear “Spatial Spillover” effect in urban carbon emission intensity and there is heterogeneity in the spillover effect in different regional contexts; that is, if a city is near a city with low carbon emission intensity, the carbon emission intensity of the first city has a higher probability of upward transfer, and vice versa. (4) Panel quantile results indicate that in cities with low carbon emission intensity, economic growth, technological progress, and appropriate population density play an important role in reducing emissions. In addition, foreign investment intensity and traffic emissions are the main factors that increase carbon emission intensity. In cities with high carbon intensity, population density is an important emission reduction factor, and technological progress has no significant effect. In contrast, industrial emissions, extensive capital investment, and urban land expansion are the main factors driving the increase in carbon intensity. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
刘华军, 邵明吉, 吉元梦. 中国碳排放的空间格局及分布动态演进: 基于县域碳排放数据的实证研究. 地理科学, 2021, 41(11): 1917-1924.
基于中国1997—2017年2725个县域单元的碳排放数据,采用标准差椭圆、Theil指数三阶段嵌套分解和Kernel密度估计等方法,全面考察中国碳排放的空间格局及分布动态演进。研究发现:① 中国碳排放由1997年的30.97亿t增长到2012年的93.08亿t,年均增长达到7.86%,而后围绕93亿t上下波动,未出现下降的拐点。② 在空间分布上,中国碳排放呈现东高西低的分布格局,表现出东北-西南方向向心集聚、西北-东南方向空间发散的趋势。③ 在空间差异上,Theil指数三阶段嵌套分解结果表明,中国碳排放的总体差异呈下降趋势,地级行政单元内部差异的贡献率由1997年的43%增加到2017年49%,成为中国碳排放总体区域差异的主要来源。④ 在分布动态演进上,中国县域单元的碳排放存在空间收敛模式,具有显著的空间正相关性,地区间的相互作用影响中国碳排放的未来空间分布。
[
Clarifying the spatial distribution, spatial differences and evolutionary trends of China’s carbon emissions has important reference value for grasping the basic situation of China’s carbon emissions and formulating a carbon peak action plan before 2030. Based on the carbon emission data of 2725 counties in China from 1997 to 2017, this paper uses standard deviation ellipse, three-stage nested inequality decomposition by Theil index and Kernel density estimation methods to comprehensively investigate the spatial pattern and dynamic evolution of China’s carbon emissions. The study found that: 1) China’s carbon emissions increased from 3.097 billion tons in 1997 to 9.308 billion tons in 2012, with an average annual growth rate of 7.86%, and then fluctuated around 9.3 billion tons, without a turning point in decline. 2) In terms of spatial distribution, China’s carbon emissions present a pattern of high in the east and low in the west, showing a trend of centripetal accumulation in the northeast-southwest direction and spatial divergence in the northwest-southeast direction. 3) In terms of spatial differences, the three-stage decomposition results of Theil index show that the overall difference in carbon emissions in China is on a downward trend, and the contribution rate of differences within prefecture-level administrative units has increased from 43% in 1997 to 49% in 2017. The main source of overall differences in China’s carbon emissions. 4) In terms of the dynamic evolution of the distribution, the carbon emissions of China’s county-level units have a spatial convergence pattern, with significant spatial positive correlation, indicating that the interaction between regions affects the future spatial distribution of China’s carbon emissions. Based on research findings, this article proposes to adjust the energy industry structure, promote the development of low-carbon industries, formulate reasonable regional joint prevention and control policies for carbon emission reduction, and establish a sound carbon trading market. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
朱泳丽, 丁利杰. 长三角城市群碳排放强度的空间效应及影响因素: 基于产业转移视角. 资源科学, 2022, 44(7): 1373-1387.
长三角城市群协同发展背景下,城市间产业转移频繁,伴随经济和碳排放的连接,对城市碳排放强度产生的影响成为区域低碳发展需要考虑的重要战略问题。本文采用动态偏离-份额模型测度城市间产业转入和转出量。基于空间全局自相关、反距离空间权重和经济地理权重矩阵下的空间杜宾模型,对2005—2017年26个长三角城市的产业转移动态、碳排放强度的时空演变特征进行研究,在空间溢出视角下对城市碳排放强度的影响因素进行分析。结果表明:①碳排放强度存在显著的空间自相关性,具有明显的空间溢出效应。②长三角城市群内频繁转移的产业多数为非能源密集型产业,产业转移并未产生显著“碳减排”效应。值得注意的是,产业转移的经济影响开始显现,产业转移实际上不利于长三角城市群整体碳排放量减少。③人均GDP与碳排放强度呈现“倒U型”,技术水平与碳排放强度呈现“U型”,存在“技术进步的反弹效应”,人口数的增加降低了碳排放强度,二产比重正向作用于碳排放强度。因此在制订碳减排计划时,需要考虑不同区域生产效率、能耗强度、人力资本等因素,做好产业转入、转出的碳排放强度监测,避免盲目进行产业转移;壮大优势产业,改善产业结构,培育新增长点,发展符合城市自身禀赋的低能耗产业。
[
Under the background of coordinated development of urban agglomerations in the Yangtze River Delta, inter-city industrial transfer is frequent. Due to the connection of the economy and carbon emissions, the impact on urban carbon emission intensity has become an important strategic issue to be considered for regional low-carbon development. In this study, the dynamic shift-share model was employed to measure the amount of industrial transfer in and out of the cities. Based on the spatial global autocorrelation, the spatial Durbin model of inverse distance spatial weight matrix, and economic geographical weight matrix, this study examined the industrial transfer dynamics and the spatial-temporal evolution characteristics of carbon emission intensity of 26 cities in the Yangtze River Delta region from 2005 to 2017, and analyzed the influencing factors of urban carbon emission intensity from the spatial spillover perspective. The results show that: (1) Carbon emission intensity shows significant spatial autocorrelation and spatial spillover effects. (2) Most of the frequently transferred industries in the Yangtze River Delta urban agglomeration are non-energy-intensive industries. Industrial transfer does not produce significant carbon emission reduction effect. It is worth noting that the economic impact of industrial transfer is beginning to emerge, but industrial transfer is not conducive to carbon emission reduction. (3) The relationship between per capita GDP and carbon intensity is inverted U shaped. Technological development level and carbon intensity shows a U-shaped relationship, which indicates the “rebound effect” of the technological progress. Population growth lowers the carbon emission intensity. Proportion of the secondary industry has positive effects on carbon emission intensity. When making carbon emission reduction plans, the production efficiency, energy intensity, and human capital in different regions need to be taken into account. Local governments should monitor the carbon emission intensity when industries are transferred in and out, avoid blind transfer of industries, strengthen competitive industries, improve industrial structure, cultivate new growth points, and develop low energy consumption industry in accordance with cities’ resource endowment. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
邱立新, 徐海涛. 中国城市群碳排放时空演变及影响因素分析. 软科学, 2018, 32(1): 109-113.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
韦彦汀, 李思佳, 张华. 成渝城市群碳排放时空特征及其影响因素. 中国环境科学, 2022, 42(10): 4807-4816.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
陈占明, 吴施美, 马文博, 等. 中国地级以上城市二氧化碳排放的影响因素分析: 基于扩展的STIRPAT模型. 中国人口·资源与环境, 2018, 28(10): 45-54.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
罗栋燊, 沈维萍, 胡雷. 城镇化、消费结构升级对碳排放的影响: 基于省级面板数据的分析. 统计与决策, 2022, 38(9): 89-93.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
余娟娟, 龚同. 全球碳转移网络的解构与影响因素分析. 中国人口·资源与环境, 2020, 30(8): 21-30.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
韩梦瑶, 刘卫东, 杨茗月. 低碳转型下中国高耗能行业的碳风险传导解析: 基于隐含碳关联网络视角. 地理研究, 2022, 41(1): 79-91.
高耗能行业作为中国低碳转型的重要一环,是落实碳达峰、碳中和目标的重要抓手。结合各行业/部门上下游关联,本文力求构建中国隐含碳关联网络,解析高耗能行业的碳风险传导路径,主要结论如下:① 中国高耗能行业的碳排放总量从2007年的50.45亿t增长至2017年的74.27亿t,占比从77%增长至80%。② 石油加工业、化学原料制品业、有色金属加工业的上下游隐含碳转移效率相对较高,而电力生产供应业、非金属制品业、黑色金属加工业则相对较低。③ 随着高耗能与其上下游行业的关联增强,隐含碳排放占比逐层降低,碳风险传导路径各有不同。④ 电力生产供应业、黑色金属加工业、非金属制品业等的单位增加值减少量对应的碳排放削减量较高,减排效率较其他行业更为显著。本研究通过构建隐含碳关联网络,解析碳风险传导的关键节点及路径,力求为中国高耗能行业的可持续低碳转型及潜在风险规避提供借鉴参考。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张正峰, 张栋. 基于社会网络分析的京津冀地区碳排放空间关联与碳平衡分区. 中国环境科学, 2023, 43(4): 2057-2068.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
李爱, 王雅楠, 李梦, 等. 碳排放的空间关联网络结构特征与影响因素研究: 以中国三大城市群为例. 环境科学与技术, 2021, 44(6): 186-193.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
郑航, 叶阿忠. 空间关联网络结构特征的减排效应: 基于城市群视角. 环境科学, 2022, 43(10): 4401-4407.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
张帅, 袁长伟, 赵小曼. 中国交通运输碳排放空间聚类与关联网络结构分析. 经济地理, 2019, 39(1): 122-129.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
童磊, 王运鹏. 省域碳排放的空间网络结构特征与影响因素研究: 基于产业转移视角. 经济问题, 2020, (3): 18-24.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
孙亚男, 刘华军, 刘传明, 等. 中国省际碳排放的空间关联性及其效应研究: 基于SNA的经验考察. 上海经济研究, 2016, (2): 82-92.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
杨桂元, 吴齐, 涂洋. 中国省际碳排放的空间关联及其影响因素研究: 基于社会网络分析方法. 商业经济与管理, 2016, (4): 56-68, 78.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
王晓平, 冯庆, 宋金昭. 成渝城市群碳排放空间关联结构演化及影响因素. 中国环境科学, 2020, 40(9): 4123-4134.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
邵帅, 徐俐俐, 杨莉莉. 千里“碳缘”一线牵: 中国区域碳排放空间关联网络的结构特征与形成机制. 系统工程理论与实践, 2023, 43(4): 958-983.
本文采用社会网络分析方法, 在对 1998–2016 年中国区域碳排放空间关联网络结构特征进行考察的基础上, 建立指数随机图模型首次对中国碳排放空间关联网络的形成机制进行了识别和解释. 结果表明: 中国区域碳排放空间关联网络可分为 “各司其责” 的四大板块并呈现出明显的区域化 “俱乐部” 空间分布特征; 各板块在样本时期内均发生了不同程度的重组, 其中净溢出板块的组成省份有所减少, 主受益和净受益板块的组成省份有所增加, 而经纪人板块的组成省份虽然有所变化但总数保持不变; 区域间的 “碳排放避难所” 效应有所弱化, 各区域倾向于以 “互惠” 或 “组团” 的方式参与碳排放空间关联 “活动”, 碳排放的空间关联存在区域间各自为政的 “诸侯经济” 与梯度断层现象; 较高的对外开放度、清洁低碳的能源结构与能源效率的提升有利于推动区域间产生更多的碳排放接收关系; 碳排放的空间关联格局随能源结构的升级而呈现出 “由西向东” 和 “由北向南” 的梯度关联趋向; 区域间经济发展方式在对外开放、经济集聚、产业结构、能源效率上的互补性以及紧密的区域贸易联系,促使碳排放空间关联网络随着区域间分工与协作的加强而呈现出千里 “碳缘” 一线牵的特点.因此, 加快推进实施区域一体化和碳交易市场等协作减排政策, 将有效促进区域间的协同低碳转型发展格局得以实现.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
刘华军, 何礼伟. 中国省际经济增长的空间关联网络结构: 基于非线性Granger因果检验方法的再考察. 财经研究, 2016, 42(2): 97-107.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
邵海琴, 王兆峰. 中国交通碳排放效率的空间关联网络结构及其影响因素. 中国人口·资源与环境, 2021, 31(4): 32-41.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
方大春, 王琳琳. 我国碳排放空间关联的网络特征及其影响因素研究. 长江流域资源与环境, 2023, 32(3): 571-581.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
魏燕茹, 陈松林. 福建省土地利用碳排放空间关联性与碳平衡分区. 生态学报, 2021, 41(14): 5814-5824.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
王悦, 张福琴, 史文秀. 区域创新产出空间异质性及关联网络分析. 科技进步与对策, 2019, 36(9): 43-50.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
董直庆, 王辉. 环境规制的“本地—邻地”绿色技术进步效应. 中国工业经济, 2019, (1): 100-118.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
常皓亮, 夏飞龙. 数字经济赋能低碳发展: 机制识别与空间溢出. 科技进步与对策, 2023, 40(10): 48-57.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
赵涛, 张智, 梁上坤. 数字经济、创业活跃度与高质量发展: 来自中国城市的经验证据. 管理世界, 2020, 36(10): 65-76.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
王青. 长三角都市圈工业能源消费碳排放强度区域差异及动态演进. 人民论坛·学术前沿, 2022, (22): 52-61.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
史丹, 李少林. 排污权交易制度与能源利用效率: 对地级及以上城市的测度与实证. 中国工业经济, 2020, (9): 5-23.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
张德钢, 陆远权. 中国碳排放的空间关联及其解释: 基于社会网络分析法. 软科学, 2017, 31(4): 15-18.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
赵霄伟. 环境规制、环境规制竞争与地区工业经济增长: 基于空间Durbin面板模型的实证研究. 国际贸易问题, 2014, (7): 82-92.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
李咏华, 高欣芸, 姚松, 等. 长三角城市群核心地区碳平衡压力与新型城镇化脱钩关系. 经济地理, 2022, 42(12): 72-81.
碳平衡压力指数与新型城镇化水平脱钩,是判断区域低碳可持续发展的重要表征,也是评价高质量发展模式、缓解资源环境约束的关键指标。文章通过构建碳平衡压力测度模型和新型城镇化水平评价指标体系,以长三角城市群核心地区16个城市为研究对象,考察2006—2020年二者的水平格局和空间演化特征,基于Tapio脱钩模型及脱钩追赶模型,探讨各城市城镇化建设与碳排放压力的动态演化关系。结果表明:①长三角城市群核心地区碳平衡压力在2006年呈现由北向南“低—高—低”的空间分异,2014—2020年多数城市碳平衡压力指数趋于稳定,经历了“十二五”至“十三五”期间产业结构调整、能源结构优化,较“十一五”末呈现明显下降趋势。②能源强度效应是长三角城市群核心地区碳平衡压力增长的主要抑制因素,并呈现“减轻→增强→减轻”的趋势。③新型城镇化水平在总体上升态势中体现出空间分异、个体差异的特征。④Tapio脱钩指数模型显示长三角城市群核心地区依次经历“扩张负脱钩→强脱钩→弱脱钩”状态,整体由粗放扩张向集约低碳发展模式转变;碳平衡压力与新型城镇化水平间的追赶脱钩指数模型显示,以杭州和上海为标杆城市,至2020年,扬州、无锡、镇江三市实现了理想追赶。⑤依据脱钩类型和脱钩追赶状态,提出了高质量发展型、绿色发展型、集约扩张型、承接扩张型和外延扩张型等五类城市的发展模式及相应的高质量发展路径。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
赵林, 曹乃刚, 韩增林, 等. 中国生态福利绩效空间关联网络演变特征与形成机制. 自然资源学报, 2022, 37(12): 3183-3200.
在定量测度生态福利绩效基础上,借助修正的引力模型和社会网络分析方法,研究了中国生态福利绩效空间关联网络演变特征与形成机制。研究发现:(1)中国生态福利绩效空间关联网络呈现“东密西疏”的空间分异规律,关联网络有“扁平化”发展趋势,网络稳定性亟待提升。(2)京津冀、长三角和珠三角处于网络核心位置,具有较强的溢出效应,东北、西北和西南地区处于边缘位置,贵州和甘肃是联系西南和西北省区的关键节点,生态福利绩效在省际间的传输多通过南部省区的中介作用实现。(3)北京、天津和上海构成净溢出板块,珠三角和江浙地区属经纪人板块,长江中下游及西南地区为净溢出板块,东北、黄河中下游及西北地区构成双向溢出板块。(4)资源禀赋差异、市场调节、政府宏观调控和科学技术推动是空间关联网络演变的主要驱动机制。研究成果可为推动生态福利绩效的跨区域协同提升提供参考依据。
[
In this article, the ecological well-being performance of provincial-level regions in China from 2000 to 2019 is measured by using the super EBM model considering undesirable output. At the same time, with the help of the modified gravity model and social network analysis method, the evolution characteristics and formation mechanism of China's ecological well-being performance spatial correlation network are analyzed. The results show that: (1) The spatial correlation network of China's ecological well-being performance shows a spatial pattern of "dense in the east but sparse in the west". During the research period, the hierarchical network structure was gradually changed, and the associated network had a "flat" evolution trend. However, the compactness and stability of spatial association networks need to be improved. (2) The Beijing-Tianjin-Hebei region, Yangtze River Delta and Pearl River Delta are at the core of the spatial correlation network, showing obvious spillover effects, while the Northeast, Northwest and Southwest regions are located at the edge of the network. Guizhou and Gansu are the key nodes between the eastern region and the southwest and northwest provinces in the network. The transmission of ecological well-being performance among provinces is mostly realized through the mediating role of southern provinces. On the whole, the eastern coastal provinces are the "overflow highland" in the spatial correlation network, showing a significant "trickling-down effect" on the Northwest, Southwest and Northeast regions, and the benefit effect of the central provinces is not significant. (3) The results of block model analysis show that China's ecological well-being performance has significant spillover effects between provinces and regions, and the spillover effect between regions is the most important. Among them, Beijing, Tianjin and Shanghai play the role of "engine" in the correlation network, forming the net overflow plate. The Pearl River Delta and Jiangsu and Zhejiang belong to the broker plate, the middle and lower reaches of the Yangtze River and Southwest China are net overflow plates, and Northeast region, the middle and lower reaches of the Yellow River and Northwest region constitute two-way overflow plates. (4) Resource endowment difference, market regulation, government macro-control and science and technology progress are the main driving mechanisms for the evolution of spatial correlation network of ecological well-being performance in China. This study can provide an important reference for promoting the regional collaborative improvement of ecological well-being performance. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
唐晓彬, 崔茂生. “一带一路”货物贸易网络结构动态变化及其影响机制. 财经研究, 2020, 46(7): 138-153.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
刘林青, 闫小斐, 杨理斯, 等. 国际贸易依赖网络的演化及内生机制研究. 中国工业经济, 2021, (2): 98-116.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
吉雪强, 张跃松. 长江经济带种植业碳排放效率空间关联网络结构及动因. 自然资源学报, 2023, 38(3): 675-693.
基于长江经济带11省市数据,利用非期望产出SBM模型测度种植业碳排放效率,通过修改的引力模型构建空间关联网络,应用社会网络分析法剖析空间关联网络结构,利用QAP模型分析空间关联网络驱动因素。研究表明:(1)长江经济带种植业碳排放效率提升较快,效率较高,但仍有提升空间,且存在地区差距,整体呈现出复杂空间网络特征;(2)长江经济带种植业碳排放效率空间关联网络关联性增强,网络结构稳定性提升,空间关联网络由上海单极主导演变为江苏、浙江、贵州、上海多中心协同发展格局;(3)农民人均收入、交通运输水平、空间邻接关系、科技水平、政府农业重视水平对长江经济带种植业碳排放效率空间关联网络具有重要影响。提升种植业碳排放效率时应考虑空间关联网络结构及其动因影响,采取有效措施增强种植业碳排放效率空间关联。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
刘华军, 孙亚男, 陈明华. 雾霾污染的城市间动态关联及其成因研究. 中国人口·资源与环境, 2017, 27(3): 74-81.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
蔡秀亭, 吕洁华, 王成齐. 中国森林生态安全空间关联的网络特征及其驱动机制. 自然资源学报, 2022, 37(8): 2137-2152.
提高森林生态安全的整体水平,是生态文明建设和林业可持续发展的必然选择。在对2009—2018年中国省际森林生态安全进行定量测度的基础上,利用修正的引力模型计算省际间的空间关联关系,并运用社会网络分析法探究其网络特征及驱动机制。结果表明:(1)中国森林生态安全的空间关联网络整体具有较好的通达性和显著的等级性,但关联强度和稳定性较低。(2)中国森林生态安全空间关联网络呈现出明显的“中心—外围”格局,山东、河南、湖北、湖南等省份处于网络中心位置,发挥重要的中介作用。(3)中国森林生态安全的空间关联网络可划分为经纪人、净溢出、净受益、双向溢出四个板块,并呈现板块内集聚为主、板块间关联为辅的空间关联特征。(4)经济发展差异、林业产业结构差异、城镇化水平差异、林业生态建设投入差异、森林资源禀赋差异对中国森林生态安全空间关联网络的形成具有弱负向的驱动作用,地理邻接关系对其具有强正向的驱动作用。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
吉雪强, 刘慧敏, 张跃松. 中国省际土地利用碳排放空间关联网络结构演化及驱动因素. 经济地理, 2023, 43(2): 190-200.
土地利用碳排放空间关联网络研究对于区域土地利用协同减排具有重要意义。基于三次全国国土调查数据测算省际土地利用碳排放,利用社会网络分析法探讨土地利用碳排放空间关联网络结构特征及演化过程,应用QAP回归分析法对土地利用碳排放空间关联网络驱动因素进行动态分析。研究发现:①土地利用碳排放的空间关联关系具有空间网络特征,研究过程中,土地利用碳排放空间关联网络关联性和稳定性整体增强。②东部沿海省市在空间关联网络中长期处于核心位置,西北与东北地区长期处于边缘位置,随着经济发展,中部与西部地区在空间关联网络中的作用逐渐加强。③中西部地区及东北地区所在板块是空间关联网络中要素的主要溢出方,东部沿海省市所在板块是要素的主要受益方。④地理空间邻近性、经济发展水平、环境规制、创新水平、能源消费结构、林地比重、产业结构对土地利用碳排放空间关联网络的形成具有一定影响。建议土地利用减排政策设计时重视土地利用碳排放空间关联网络及其特征的可能影响。
[
The study of the spatial correlation network of land use carbon emission is of great significance for regional land use collaborative emission reduction. Based on the data of three national land survey,this study calculates the interprovincial land use carbon emissions,and discusses the spatial correlation network structure and evolution process of land use carbon emissions by the methods of social network analysis. It uses the QAP regression analysis to dynamically analyze the driving factors of the spatial correlation network of land use carbon emissions. It's found that: 1) The spatial association of land use carbon emissions had the characteristics of a spatial network,the spatial correlation and stability of the spatial association network of land use carbon emissions were enhanced as a whole,and the internal hierarchical structure as a whole showed a loose trend. 2) The eastern coastal provinces and cities were in the core position for a long time in the spatial correlation network,and the northwest and northeast regions were in a marginal position for a long time. With the development of economy,the role of the central and western regions in the spatial correlation network had gradually strengthened. 3) The plates in the central and western regions and the northeastern region were the main spillover parties of the elements in the spatial association network,and the plates in the eastern and southeast coastal areas were the main beneficiaries of the elements. 4) The geographical spatial proximity,the level of economic development, the environmental regulation,the level of innovation,the energy consumption structure,the proportion of woodland, and the industrial structure have a significant impact on the formation of the spatial correlation network of land use carbon emissions. It is suggested that attention should be paid to the spatial correlation network of land use carbon emission and its characteristics when designing land use emission reduction policies.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
甘畅, 王凯. 中国省际服务业碳排放空间网络结构及其驱动因素. 环境科学研究, 2022, 35(10): 2264-2272.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |