
海洋牧场碳汇资源生态补偿标准
Ecological compensation standards of carbon sink resources in the marine ranch
海洋牧场建设是中国扩增海洋碳汇,实现碳中和战略目标的有效途径。碳汇具有明显的外部性,只有确定合理的补偿标准才能调动海洋牧场建设经营者积极性。以海洋牧场中藻类、贝类、鱼类、甲壳及其他类经济性碳汇资源为研究对象,利用最优化模型核算了碳汇资源生态价值的补偿标准。研究结果表明:藻类、贝类、鱼类、甲壳及其他类的生态补偿标准分别为134.94元/t、820.05元/t、782.39元/t、3764.16元/t,补偿标准存在种类间差异性。研究结果可为优化当前海洋牧场生态补偿政策提供理论参考。
The construction of marine ranches is an effective way to increase the ocean carbon sink and achieve the strategic goal of carbon neutrality in China. Carbon sink has obvious externality, only to determine a reasonable compensation standard to mobilize the enthusiasm of marine ranch construction operators. This paper takes economic carbon sink resources such as algae, shellfish, fish, crustacean and other species in the marine ranch as the research object, and accounted for the compensation criteria for the ecological value of carbon sink resources using an optimization model. The results indicated that the ecological compensation standards of algae, shellfish, fish, crustacean and other species were 134.94 yuan/t, 820.05 yuan/t, 782.39 yuan/t, and 3764.16 yuan/t, respectively, and there was inter-species variability in compensation standards. The results can provide a theoretical reference for optimizing the current ecological compensation policy for the marine ranch.
海洋牧场 / 碳汇资源 / 补偿标准 / 生态功能价值 {{custom_keyword}} /
marine ranch / carbon sink resource / compensation standard / ecological function value {{custom_keyword}} /
表1 海洋牧场碳汇资源生态功能Table 1 Ecological functions of carbon sink resources in the marine ranch |
生态系统服务 | 生态功能 | 碳汇资源 | 功能描述 |
---|---|---|---|
调节服务 | X1固碳功能 | 藻类、贝类、鱼类、甲壳及其他类 | 固碳功能如图1所示,浮游植物通过光合作用将溶解在海水中的CO2转化为有机碳[23]。有机碳中的5%可在海洋牧场藻类、贝类、鱼类、甲壳及其他类间通过食物网从低营养级向高营养级传递[24],即“生物泵(Biological Carbon Pump,BCP)”。“生物泵”有机碳中的25%固定在碳汇资源体内并通过捕捞等活动从海水中转移出来[25],称为可移出碳;25%伴随着海洋生物的死亡、排便、蜕皮等活动形成颗粒有机碳(Particulate Organic Carbon,POC),并沉积海底[26]。有机碳中剩余的95%是释放在水中的溶解有机碳(Dissolved Organic Carbon,DOC)。DOC中至少有95%可被微生物利用,经分解转化为能储存数千年的惰性溶解有机碳(Recalcitrant Dissolved Organic Carbon,RDOC),即“微生物泵(Microbial Carbon Pump, MCP)”[27]过程 |
X2产氧功能 | 藻类 | 藻类通过光合作用释放O2,供给海洋动物呼吸,并促进大气中CO2和O2平衡 | |
X3净化氮功能 | 藻类、贝类、鱼类 | 藻类、贝类、鱼类吸收有机氮、有机磷,通过反硝化作用,最终以无机形式将氮、磷释放到大气中,降低海水富营养化程度 | |
X4净化磷功能 | 藻类、贝类 | ||
X5净化重金属功能 | 藻类、贝类、鱼类 | 藻类、贝类、鱼类利用体内金属疏蛋白解毒机制将吸附的重金属重新以无毒形式释放 | |
X6干扰调节功能 | 贝类 | 贝类礁体中双壳贝类能够促进生物沉积,降低海水流速,减少水土流失,减轻风暴潮、海浪等对海洋环境的侵蚀,是“活的海岸线” | |
X7生物控制功能 | 鱼类 | 增殖放流中的鱼类利用摄食过程恢复和优化海洋生物种群结构。该生态过程既促进生态系统保持营养平衡和良性竞争,又有效控制外来生物和有害生物入侵,减少海洋牧场生物灾害 | |
支持服务 | X8物种多样性功能 | 藻类、贝类、鱼类、甲壳及其他类 | 增殖放流、保护野生种群等丰富海洋基因资源;投放人工鱼礁、修复海藻床等构建增殖物种的产卵场、索饵场和洄游通道,提高生物丰度 |
表2 国家级海洋牧场示范区碳汇资源量Table 2 The quantity of carbon sink resources in national marine ranch demonstration zone |
藻类 | 贝类 | 鱼类 | 甲壳及其他类 | |
---|---|---|---|---|
传统海水养殖单产/(t/hm2) | 4.200 | 5.964 | 0.451 | 0.703 |
海洋牧场单产能力/(t/hm2) | 5.628 | 7.992 | 0.605 | 0.942 |
海洋牧场渔获物产量/t | 1314774 | 1867133 | 141327 | 219978 |
海洋牧场碳汇资源量/t | 15620708 | 2521425 | 141327 | 874270 |
表3 海洋牧场碳汇资源生态功能系数Table 3 Coefficient of ecological functions of carbon sink resources in marine ranch |
藻类 | 贝类 | 鱼类 | 甲壳及其他类 | |
---|---|---|---|---|
X1系数 | 0.070 | 0.043 | 0.030 | 0.053 |
X2系数 | 4.202 | |||
X3系数 | 306.748 | 128.601 | 31.656 | |
X4系数 | 2500.000 | 1243.781 | ||
X5系数 | 20.833 | 1.427 | 2.710 | |
X6系数 | 23.130 | |||
X7系数 | 0.335 | |||
X8系数 | 6.703 | 3.351 | 0.335 | 1.005 |
表4 海洋牧场碳汇资源生态功能价格Table 4 Price of ecological functions of carbon sink resources in the marine ranch (元) |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
生态功能价格 | 267.68 | 567.00 | 1500.00 | 2500.00 | 1000.00 | 18967.85 | 262.10 | 544.89 |
表5 海洋牧场碳汇资源生态功能产出能力Table 5 Output capacity of ecological functions of carbon sink resources in the marine ranch |
藻类 | 贝类 | 鱼类 | 甲壳及其他类 | |
---|---|---|---|---|
| 227677395 | 60426366 | 4767515 | 16495660 |
| 14.58 | 23.97 | 33.73 | 18.87 |
| 2330405 | 861751 | 843743 | 869920 |
| 0.15 | 0.34 | 5.97 | 1.00 |
注:由于生态功能计量单位不统一,根据计量单位,生态功能X1~X5为一组,生态功能X6~X8为一组。 |
表6 海洋牧场碳汇资源各生态功能产出能力及其占比Table 6 Different output capacity of ecological functions of carbon sink resources in the marine ranch and its proportion |
藻类 | 贝类 | 鱼类 | 甲壳及其他类 | |
---|---|---|---|---|
X1/t | 223152971 (98.01%) | 58637791 (97.04%) | 4710900 (98.81%) | 16495660 (100%) |
X2/t | 3717446 (1.63%) | |||
X3/t | 50924 (0.02%) | 19607 (0.03%) | 4464 (0.09%) | |
X4/t | 6248 (0.003%) | 2027 (0.003%) | ||
X5/t | 749806 (0.33%) | 1766941 (2.92%) | 52150 (1.09%) | |
X6/hm2 | 109011 (12.65%) | |||
X7/hm2 | 421872 (50.00%) | |||
X8/hm2 | 2330405 (100.00%) | 752440 (87.35%) | 421871 (50.00%) | 869920 (100.00%) |
[1] |
Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
黄贤金, 张秀英, 卢学鹤, 等. 面向碳中和的中国低碳国土开发利用. 自然资源学报, 2021, 36(12): 2995-3006.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求. 中国科学院院刊, 2021, 36(2): 179-187.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
唐启升, 刘慧. 海洋渔业碳汇及其扩增战略. 中国工程科学, 2016, 18(3): 68-73.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
刘鸿雁, 杨超杰, 张沛东, 等. 基于Ecopath模型的崂山湾人工鱼礁区生态系统结构和功能研究. 生态学报, 2019, 39(11): 3926-3936.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
张樨樨, 刘鹏. 中国海洋牧场生态系统优化的政策仿真与模拟. 中国人口·资源与环境, 2019, 29(12): 168-176.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
沈金生, 梁瑞芳. 海洋牧场蓝色碳汇定价研究. 资源科学, 2018, 40(9): 1812-1821.
2020年,中国将建成一批国家级海洋牧场示范区。本文重点选择海洋牧场蓝色碳汇功能,阐述了蓝色碳汇定价的理论和现实依据。在分析了影响蓝色碳汇成本收益的各个因素的基础上,提出蓝色碳汇价格的测算思路,构建蓝色碳汇成本收益定价模型。以桑沟湾特定面积海域的栉孔扇贝养殖为例,分别对用于海洋牧场生产方式得到的蓝色碳汇总净收益现值和用于其他渔业生产方式得到的总净收益现值进行计算,得出海洋牧场蓝色碳汇交易价格为253元/t。研究表明,海洋牧场蓝色碳汇有巨大的经济、生态价值,中国须构建完善的海洋牧场蓝色碳汇交易市场,以期最大限度实现海洋碳汇功能,修复水域生态环境,筑牢海洋生态安全屏障。
[
The 21st century is the century of the sea. According to the notice of the Ministry of Agriculture, China will build a number of state-level marine ranch demonstration areas in 2020. Focused on the blue carbon sink function of marine pasture, this paper elaborates the theoretical and realistic basis for the pricing of blue carbon sinks. The factors affecting the cost and benefit of blue carbon sink are identified as seafood categories, cultivation periods, and so on. This paper put forward the calculation idea of the blue carbon sink exchange price and constructs the cost and benefit pricing model of the blue carbon sink in marine ranching. Taking the aquaculture of Chlamys Farreri in the specific area of Sanggou Bay as an example, the present value of the total net income of the blue carbon sequestration obtained from marine ranch production and the present value of the total net income from other forms of fishery production were further calculated respectively. The trading price of the marine ranches’ blue carbon sinks is 253 yuan per ton. Marine ranches can not only realize the economic development of ocean, but also improve the water environment. The blue carbon sink of marine ranch is becoming more and more important. Our results show that the blue carbon sinks of marine pastures have a huge economic and ecological value. In order to maximize the function of marine carbon sinks, repair the ecological environment of the water sea, establish a marine ecological security barrier, and build a marine ecological civilization, it is necessary for China to construct a perfect blue carbon sink exchange trading market for marine pastures. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
庞洁, 靳乐山.基于渔民受偿意愿的鄱阳湖禁捕补偿标准研究. 中国人口·资源与环境, 2020, 30(7): 169-176.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
邓元杰, 姚顺波, 侯孟阳, 等. 退耕还林还草工程对生态系统碳储存服务的影响: 以黄土高原丘陵沟壑区子长县为例. 自然资源学报, 2020, 35(4): 826-844.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
王正淑, 王继军, 刘佳. 基于碳汇的县南沟流域退耕林地补偿标准研究. 自然资源学报, 2016, 31(5): 779-788.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
牛志伟, 邹昭晞. 农业生态补偿的理论与方法: 基于生态系统与生态价值一致性补偿标准模型. 管理世界, 2019, 35(11): 133-143.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
杨红生, 章守宇, 张秀梅, 等. 中国现代化海洋牧场建设的战略思考. 水产学报, 2019, 43(4): 1255-1262.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进. 自然资源学报, 2015, 30(8): 1243-1254.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
焦念志. 微生物碳泵理论揭开深海碳库跨世纪之谜的面纱. 世界科学, 2019, (10): 38-39.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献. 地球科学进展, 2005, 20(3): 359-365.
中国是浅海贝藻养殖的第一大国,年产量超过1 000万t。根据贝藻养殖产量、贝藻体内碳元素的含量及其贝类能量收支,推算出2002年中国海水养殖的贝类和藻类使浅海生态系统的碳可达300多万t,并通过收获从海中移出至少120万t的碳。该结果不仅为探讨全球“遗漏的碳汇”问题提供了一个新的线索,同时也证明了浅海的贝类和藻类养殖活动直接或间接地使用了大量的海洋碳,提高了浅海生态系统吸收大气CO<sub>2</sub>的能力。另外,贝藻的养殖活动与浅海生态系统的碳循环之间关系复杂,相互作用明显,因此,它的生物地球化学过程是一个值得深入研究的科学问题。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
陈作志, 邱永松. 南海北部生态系统食物网结构、能量流动及系统特征. 生态学报, 2010, 30(18): 4855-4865.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
李睿, 韩震, 程和琴, 等. 基于ECOPATH模型的东海区生物资源能量流动规律的初步研究. 资源科学, 2010, 32(4): 600-605.
本文根据国际水生资源管理中心网站的东海区生物资源数据和历史资料数据,利用Ecopath模型对东海区生物资源能量流动规律进行了初步研究。东海生态系统存在4个营养级,第一营养级是碎屑和浮游植物;第二营养级是一些草食性的动物;第三营养级为第一级肉食动物;第四营养级为第二级肉食动物,并且大多为杂食性鱼类。东海区生态系统分为32个功能组。东海区Ecopath模型基本参数主要有:生物量(B)、生产量与生物量的比值(P/B)、消耗量与生物量的比值(Q/B)和生态转移效率(EE)。Ecopath模型分析结果显示,总捕获为5.761 t/(km<sup>2</sup>·a)、总消耗量为2621.630t/ (km<sup>2</sup>·a)、总输出为106.339t/ (km<sup>2</sup>·a)、流向碎屑总量为1303.487t/(km<sup>2</sup>·a),总生物量(不包含碎屑)为73.478t/ km<sup>2</sup>,系统总流量为5393t/(km<sup>2</sup>·a),数据表明东海区的营养水平、生产力水平和饵料生物水平都处于一个良好的状态;初级生产力与呼吸量的比值为0.825,说明东海区生物资源栖息环境质量处于较好的水平;生态系统连接指数和系统杂合度分别为0.172和0.199,表明东海区生态系统不同营养级之间的捕食活动复杂性还比较低;捕获平均营养级为3.1,较往年有所降低,说明东海区的生物资源处于退化状态。
[
Based on biological resources data published and relevant data from the International Center for Living Aquatic Resources Management (ICLARM, currently it is the WorldFish Center) in the East China Sea, in the present study, the authors investigated biological resources energy flows in the East China Sea (ECS) by virtue of the Ecopath model. Thousands of plants and animals have been reported in the East China Sea, including plankton, invertebrates, fish, marine mammals and seabirds. Nutrient salt, primary productive forces and fish food biology levels over the ECS area jointly favor an excellent perched for marine lives, leading living resources in the ECS to be relatively rich. In general, the ecosystem in the ECS shows four nutrition levels. Detritus and phytoplankton are at the first nutrition level. The second nutrition level includes some phytophagy animals. The third one is the first level of carnivorous animals while the fourth nutrition level is the second level of carnivorous animals and primarily the omnivorous habit fish. To circumvent describing all species in the ECS, in the study most of species were reasonably grouped in terms of size, habitat, feeding preferences, and/or taxonomic similarities. Well-studied commercial species were generally represented in a single species category. Consequently, the Ecopath model was composed of 32 functional groups. The Ecopath model for the ECS basically constitutes four key variables: biomass (B), the ratio of production to biomass (P/B), the ratio of consumption to biomass (Q/B) and ecotrophic efficiency (EE). The Ecopath model requires a range of data sources as inputs from each functional group, in which production is equal to the prey and natural death as well as reproduction, to assess inflows and outflows of biological resource energy in an ecosystem. Results from the Ecopath model built for the ECS indicated a total catch of 5.761 t/(km<sup>2</sup>·a), a total consumption of 2621.630 t/km<sup>2</sup>/a, a total output of 106.339 t/(km<sup>2</sup>·a), a total detritus import of 1303.487 t/(km<sup>2</sup>·a), a total biomass (no detritus) of 73.478 t/(km<sup>2</sup>·a), and a total system throughput of 5393 t/(km<sup>2</sup>·a), respectively. These results indicated that the nutrition, productivity and prey biology in the East China Sea are in a good condition. The ratio of primary productive forces to the respiratory was found to be 0.825, showing a good habitat for biological resources in the ECS. The ecosystem connection index and complexity of 0.172 and 0.199, respectively, indicated a low prey action complexity of different nutrition levels in the ECS. The mean trophic level of the catch was estimated to be 3.1, lower than previous years, indicating the ecosystem in the ECS is at a degrading stage.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
李纯厚, 贾晓平, 齐占会, 等. 大亚湾海洋牧场低碳渔业生产效果评价. 农业环境科学学报, 2011, 30(11): 2346-2352.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
孙康, 崔茜茜, 苏子晓, 等. 中国海水养殖碳汇经济价值时空演化及影响因素分析. 地理研究, 2020, 39(11): 2508-2520.
中国是全球海水养殖第一强国,养殖产量占世界总产量的70%以上。根据碳税法和人工造林法测算海水养殖碳汇经济价值,并探讨时空分异特征;采用LMDI指数分解法,分析海水养殖业碳汇能力影响因素。研究结果表明:① 2008—2017年碳汇量和经济价值均呈上升趋势,2017年经济价值达到91.8亿元;各省碳汇效率排名波动较大,效率和经济价值相对差异和绝对差异逐渐缩小,经济价值处于持续增长趋势。② 时空演化上,经济价值呈现出泛环渤海、泛长三角、泛珠三角三足鼎立分布态势,时空演化揭示了中国碳汇渔业在科学引导,合理布局,陆海统筹,试点先行,全国推广的演化机理,表明中国碳汇渔业发展态势趋好。③ 碳汇能力影响因素中,价值效应大于规模效应和结构效应,渔业相关的法律、法规对规模效应和结构效应的影响显著。研究海水养殖碳汇有利于促进海洋渔业高质量发展,以期为开发利用海洋渔业碳汇提供理论依据。
[
China is the world's largest mariculture country, and its mariculture output accounts for more than 70% of the world's total. First, according to the data from China Fishery Statistical Yearbook, the carbon sinks of mariculture in each province from 2008 to 2017 are estimated. It is found that the carbon sinks of mariculture in China were on the rise, and the average carbon sink efficiency was stable at about 8.4%. After 2011, the value reached more than 1 million tons. Second, we adopted the carbon tax law and artificial afforestation method to calculate the economic value of mariculture carbon sink, and then examined the time-space differentiation characteristics. Besides, we used LMDI index decomposition method to analyze the factors influencing the carbon sink capacity of mariculture. The results show that: (1) Both carbon sink and economic value showed an upward trend from 2008 to 2017, and the economic value reached 9.18 billion yuan in 2017; the ranking of carbon sink efficiency of various provinces fluctuated greatly, and the relative and absolute differences in efficiency and economic value were gradually shrinking. The economic value keeps a continuous growth trend. (2) In terms of spatio-temporal evolution, economic value presents a three-legged distribution situation in the Pan-Bohai Rim, Pan-Yangtze River Delta, and Pan-Pearl River Delta. The spatio-temporal evolution reveals that carbon sink fishery is scientifically guided, rationally distributed, land-sea coordination, and pilot projects first in China, the evolutionary mechanism of national promotion indicates that the development trend of carbon sink fishery is getting better. (3) Among the influencing factors of carbon sink capacity, value effect is greater than scale effect and structure effect, and fishery-related laws and regulations have significant influence on scale effect and structure effect. Research on mariculture carbon sinks is conducive to promoting the high-quality development of marine fisheries, in order to provide a theoretical basis for the development and utilization of marine fishery carbon sinks. {{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
李忠义, 林群, 戴芳群, 等. 主成分分析对黄海6种主要饵料鱼类的质量分析评价. 渔业科学进展, 2009, 30(5): 64-68.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
高蜜, 吴星,
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
高文华, 杜永芬, 王丹丹, 等. 福建罗源湾潮间带沉积物重金属含量空间分布及其环境质量影响. 环境科学, 2012, 33(9): 3097-3103.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |