
不同施肥方式对东北旱田黑土nirK和nirS型反硝化细菌群落结构的影响及黑土保护建议
喻江, 李彦生, 谢志煌, 高志颖, 刘晓冰, 于镇华
自然资源学报 ›› 2022, Vol. 37 ›› Issue (9) : 2306-2318.
不同施肥方式对东北旱田黑土nirK和nirS型反硝化细菌群落结构的影响及黑土保护建议
Effects of fertilization managements on nirK/nirS-type denitrifying bacterial community structures in upland black soils of Northeast China and suggestions for protecting black soil resource
反硝化过程是土壤氮素循环的重要过程之一,与土壤氮肥损失和温室气体排放紧密相关。通过分析不同施肥方式对东北旱田黑土nirK型和nirS型反硝化细菌群落结构的影响及其与N2O排放的关系,证实黑土中nirK型比nirS型反硝化细菌多样性丰富,且更易受土壤理化性质的影响。施入化肥会降低东北旱田黑土反硝化细菌多样性、N2O释放量和土壤养分含量,而有机肥的施入虽然可提高土壤养分含量,但是也会显著增加土壤反硝化作用,存在潜在的负面环境效应。因此对黑土地的保护要积极推行种养结合,建立可循环农业体系;适当配施有机肥料,调节黑土微生物活力;大力完善相关制度,营造科学管理新规范,从而构建我国黑土保护的立体格局。
Soil denitrification is one of the important processes of soil nitrogen cycling, which is closely related to soil nitrogen loss and greenhouse gas emissions. The relation between communities and the release of N2O was analyzed in this study. The results showed that regardless the fertilization treatments, nirK type denitrifying bacteria had higher diversity than nirS type denitrifying bacteria, which were more susceptible to soil physical and chemical properties. Application of chemical fertilizer decreased soil nutrient content, the diversity of denitrifying bacteria and the release of N2O, while organic fertilizer (F+M and F+2M) application significantly increased the soil denitrification. Therefore, application of chemical fertilizer is not conducive to maintaining the fertility of black soil. Although the combined application of chemical fertilizer and organic fertilizer can improve soil fertility, the potential negative environmental effects can not be ignored. So, we suggested that the protection of black soil should actively promote the planting and breeding integrated mode, construct the recyclable agricultural system; appropriately apply organic fertilizers, regulate the activities of soil microbials; improve the relevant institutions, create new norms of scientific managements, and finally construct the multi-directional patterns for the protection of farmland in black soil region of Northeast China.
有机肥 / 反硝化作用 / 微生物多样性 / N2O {{custom_keyword}} /
organic fertilizer / denirtrification / microbial community diversity / N2O {{custom_keyword}} /
表1 不同施肥处理土壤基本理化性质Table 1 Basic soil chemical and physical properties of different fertilization treatments |
施肥 处理 | 速效钾 /(mg·kg-1) | 有效磷 /(mg·kg-1) | 水溶性有机碳 /(mg·kg-1) | 铵态氮 /(mg·kg-1) | 硝态氮 /(mg·kg-1) | pH | 含水量 /% | 碳∶氮 C∶N |
---|---|---|---|---|---|---|---|---|
NoF | 154.76±11.89c | 39.18±17.07b | 85.22±10.49a | 129.16±2.15a | 11.75±1.48c | 5.35±0.04c | 28.91±0.83a | 14.49±0.73ab |
CF | 147.15±10.01c | 38.53±13.64b | 80.25±7.35a | 123.15±1.78b | 13.53±0.44ab | 5.33±0.08c | 29.97±1.11a | 15.02±0.80a |
F+M | 201.93±24.15b | 66.54±16.92a | 58.77±8.08a | 125.47±3.57ab | 14.56±0.35b | 5.85±0.45b | 32.47±1.18b | 13.91±0.43ab |
F+2M | 268.16±26.64a | 74.23±3.40a | 69.17±32.95a | 124.46±0.57b | 20.92±1.18a | 6.65±0.17a | 32.82±0.76b | 13.36±0.25b |
注:同一列不同小写字母表示不同处理间差异显著(P<0.05),下同。速效钾、有效磷、pH和碳、氮数据引自文献 [30]。 |
图3 门水平nirK型和nirS型反硝化细菌群落结构Fig. 3 Community structure of nirK and nirS denitrifying bacteria at the phylum level |
表2 具有明确分类的nirK型和nirS型反硝化细菌相对丰度Table 2 Relative abundances of identified nirK and nirS denitrifying bacteria |
nirK | nirS | ||||||||
---|---|---|---|---|---|---|---|---|---|
NoF | CF | F+M | F+2M | NoF | CF | F+M | F+2M | ||
门 | |||||||||
Protobacteria | 50.46a | 47.29a | 51.65a | 51.33a | 14.01 | 9.84a | 19.10a | 27.77a | |
Euryarchaeota | 0.40a | 0.96a | 0.39a | 0.65a | — | — | — | — | |
纲 | |||||||||
Gammaproteobacteria | — | — | — | — | 7.75a | 6.04a | 12.93a | 21.79a | |
Alphaproteobacteria | 38.14a | 34.31a | 35.22a | 28.69a | 2.19a | 1.28a | 1.19a | 0.95a | |
Betaproteobacteria | 9.03a | 7.88a | 9.45a | 12.88a | 1.76a | 0.52a | 1.37a | 1.10a | |
Halobacteria | 0.40a | 0.96a | 0.39a | 0.65a | — | — | — | — | |
目 | |||||||||
Xanthomonadales | — | — | — | — | 7.75a | 6.04a | 12.93a | 21.79a | |
Halobacteriales | 0.40a | 0.96a | 0.39a | 0.65a | — | — | — | — | |
Nitrosomonadales | 8.94a | 7.84a | 8.82a | 5.63a | — | — | — | — | |
Rhizobiales | 38.04a | 34.19a | 34.64a | 26.84a | 2.19a | 1.28a | 1.19a | 0.95a | |
Burkholderiales | 0.09a | 0.04a | 0.63a | 7.26a | — | — | — | — | |
科 | |||||||||
Bradyrhizobiaceae | 32.48a | 26.50a | 21.53a | 17.60a | 2.19a | 1.28a | 1.19a | 0.95a | |
Nitrosomonadaceae | 8.94a | 7.84a | 8.82 | 5.63a | — | — | — | — | |
Phyllobacteriaceae | 3.58a | 4.93a | 3.46a | 1.42a | — | — | — | — | |
Alcaligenaceae | 0.09a | 0.04a | 0.63a | 7.26a | — | — | — | — | |
Rhizobiaceae | 0.10a | 0.02a | 2.07a | 0.29a | — | — | — | — | |
Halobacteriaceae | 0.40a | 0.96a | 0.39a | 0.65a | — | — | — | — | |
Hyphomicrobiaceae | 0.13a | 0.11a | 0.77a | 1.09a | — | — | — | — | |
Xanthomonadaceae | — | — | — | — | 7.75a | 6.04a | 12.93a | 21.79a | |
属 | |||||||||
Bradyrhizobium | 28.85a | 23.16ab | 17.32ab | 12.97b | 2.19a | 1.28a | 1.19a | 0.95a | |
Nitrosospira | 8.94a | 7.84a | 8.82a | 5.63a | — | — | — | — | |
Mesorhizobium | 3.58a | 4.93a | 3.38a | 1.16a | — | — | — | — | |
Achromobacter | 0.09a | 0.04a | 0.61a | 7.25a | — | — | — | — | |
Devosia | 0.13a | 0.11a | 0.70a | 1.03a | — | — | — | — | |
Rhodanobacter | — | — | — | — | 7.75a | 6.04a | 12.93a | 21.79a |
注:数值表示三次重复平均值,“—”表示未检测到,每一行不同小写字母表示不同处理间差异显著(P<0.05)。 |
[1] |
邓祥征, 梁立, 廖晓勇, 等. 国际粮食贸易影响下东北黑土地生产压力变化与保护策略. 自然资源学报, 2022, https://kns.cnki.net/kcms/detail/11.1912.N.20220129.1721.002.html.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
张楠, 苗淑杰, 乔云发, 等. 东北农田黑土N2O排放研究进展. 土壤学报, 2022, 59(4): 899-909.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
刘洪彬, 李顺婷, 吴梦瑶, 等. 耕地数量、质量、生态“三位一体” 视角下我国东北黑土地保护现状及其实现路径选择研究. 土壤通报, 2021, 52(3): 544-552.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
梁爱珍, 李禄军, 祝惠. 科技创新推进黑土地保护与利用, 齐力维护国家粮食安全―好养好黑土地的对策建议. 中国科学院院刊, 2021, 36(5): 557-564.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张阳, 张春宇, 张明聪, 等. 黑龙江大豆―玉米轮作体系氮磷调控的产量效应与养分平衡. 中国土壤与肥料, 2021, (1): 44-52.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
王宁, 南宏宇, 冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响. 应用生态学报, 2020, 31(1): 173-181.
在甘肃河西走廊棉区进行连续3年的定位施肥试验,研究了化肥减量20%~40%并配施不同有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响。结果表明:与单施化肥相比,化肥减量配施有机肥能显著提高土壤细菌和放线菌数量,降低土壤真菌数量,化肥减量配施普通有机肥加生物有机肥(COBF<sub>2</sub>)处理土壤细菌最多,较单施化肥(CF)在棉花蕾期、铃期和吐絮期分别提高了84.6%、57.1%和43.5%,化肥减量配施生物有机肥(CBF<sub>2</sub>)处理放线菌数量最多,较CF在棉花蕾期、铃期和吐絮期分别提高了28.2%、32.7%和32.2%,CBF<sub>2</sub>土壤真菌数量最低,较CF在棉花蕾期、铃期和吐絮期分别降低了35.8%、29.3%和13.4%。化肥减量配施有机肥提高了土壤细菌/真菌、放线菌/真菌和脲酶、过氧化氢酶、蔗糖酶、碱性磷酸酶活性,其中COBF<sub>2</sub>对酶活性的提升最有效。化肥减量配施有机肥提高了棉花单株铃数,对棉花长势、地上干物质积累有一定的促进作用,COBF<sub>2</sub>棉花产量最高,籽棉和皮棉产量分别较CF提高了14.2%和10.9%,增产显著。综合分析土壤微生物生物量、酶活性和棉花产量,COBF<sub>2</sub>处理,即化肥减量40%配施1800 kg·hm<sup>-2</sup>普通有机肥和600 kg·hm<sup>-2</sup>生物有机肥效果最佳。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
魏猛, 张爱君, 诸葛玉平, 等. 长期不同施肥对黄潮土区冬小麦产量及土壤养分的影响. 植物营养与肥料学报, 2017, 23(2): 304-312.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
宁川川, 王建武, 蔡昆争. 有机肥对土壤肥力和土壤环境质量的影响研究进展. 生态环境学报, 2016, 25(1): 175-181.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王军, 申田田, 车钊, 等. 有机和无机肥配比对黄褐土硝化和反硝化微生物丰度及功能的影响. 植物营养与肥料学报, 2018, 24(3): 641-650.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响. 水土保持学报, 2018, 32(1): 352-360.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
张倩, 刘冰洁, 余璐, 等. 生物炭对滨海湿地盐碱土壤碳氮循环的影响. 自然资源学报, 2019, 34(12): 2529-2543.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
曹林桦, 刘彩霞, 刘茗, 等. 集约经营对毛竹林土壤反硝化细菌丰度的影响. 土壤学报, 2020, 57(3): 710-720.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
段春健, 宛颂, 叶桂萍, 等. 长期缺素施肥及石灰石膏施用对江西鹰潭红壤反硝化微生物功能基因丰度的影响. 应用生态学报, 2021, 32(6): 2209-2216.
反硝化功能基因丰度是决定温室气体氧化亚氮(N<sub>2</sub>O)排放潜力的重要生物因素。反硝化功能基因主要包括产生N<sub>2</sub>O的关键基因nirK和nirS,以及将N<sub>2</sub>O还原成氮气的基因nosZ I和nosZ II。本研究利用实时荧光定量PCR,研究了32年缺施氮(N)、磷(P)或钾(K)肥,以及施用石灰、石膏处理下江西鹰潭红壤反硝化功能基因的丰度,分析了其关键影响因素。结果表明: 与平衡施肥的NPK处理相比,缺施P肥显著降低了nirK、nirS、nosZ I和nosZ II基因丰度;缺施N肥显著降低了nirK、nosZ I和nosZ II丰度,对nirS丰度无显著影响;缺施K肥则对反硝化功能基因丰度无显著影响。逐步回归和随机森林分析表明,土壤pH值是影响旱地红壤nosZ I和nosZ II基因丰度的关键环境因子。施用石灰或石灰+石膏提高了土壤pH值,进而显著提高了nosZ II基因丰度和nosZ II/nosZ I比值,增幅分别为151%~233%和127%~155%。旱地红壤施用石灰或石灰+石膏更有利于nosZ II型N<sub>2</sub>O还原菌生长,可能提高nosZ II在N<sub>2</sub>O还原中的相对重要性。缺施P肥对红壤反硝化功能基因丰度的负面影响最大,而施用石灰或石灰+石膏可以提高nosZ II丰度和nosZ II/nosZ I比值,有利于降低红壤N<sub>2</sub>O排放潜力。
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
丁少男, 薛萐, 刘国彬. 施肥处理对黄土丘陵区农田土壤酶活性和水溶性有机碳、氮的影响. 农业环境科学学报, 2015, 34(11): 2146-2154.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
R Development Core Team. Vienna, Austria: R Foundation for Statistical Computing, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
于镇华, 李彦生, 金剑, 等. 不同施肥措施对农田黑土剖面土壤酶活性特征的影响. 土壤与作物, 2018, 7(3): 276-283.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
周慧, 史海滨, 张文聪, 等. 有机无机氮配施对不同程度盐渍土硝化和反硝化作用的影响. 环境科学, 2021, 42(10): 5010-5020.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
陈泽斌, 李冰, 林丽, 等. NirS和nirK型反硝化细菌在水稻根中的分布. 东北农业科学, 2021, 46(1): 62-67.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
胡晓婧, 刘俊杰, 于镇华, 等. 东北黑土nirS型反硝化细菌群落和网络结构对长期施用化肥的响应. 植物营养与肥料学报, 2020, 26(1): 1-9.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
朱艺双. 含铁矿物对城市河道反硝化过程的影响研究. 上海: 华东师范大学, 2019.
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |