
OBIA与RF结合的龙口市土地利用信息提取方法
The extraction approach of land use information combining OBIA with RF in Longkou city
为提高中分辨率遥感影像解译精度,本文提出面向对象影像分析(Object Based Image Analysis,OBIA)与随机森林(Random Forest,RF)结合的土地利用信息提取方法。采用Landsat 8 OLI影像,针对不同地物特点,阈值分割和多尺度分割结合创建影像对象,规则集和分类器协同分类,基于Relief F算法分别对光谱特征、纹理特征及所有特征降维筛选特征子集,并与全部特征一起应用RF建模,对龙口市进行土地利用信息提取与比较。结果表明:OBIA与RF结合提取土地利用信息,基于Relief F算法筛选纹理特征,保留完整光谱、几何、空间关系特征构建RF模型,建模错分率为0.0958,分类总体精度和Kappa系数分别为89.37%和0.872,取得较理想结果。该方法可应用于中分辨率遥感影像土地利用信息提取。
In order to improve the interpretation precision of the medium resolution satellite image, this paper proposed a new extraction approach of land use information combining Object Based Image Analysis (OBIA) with Random Forest (RF). Using the Landsat 8 OLI image and according to the features of all kinds of ground objects, the image objects were created combined with the multi-threshold and multi-resolution segmentation method, and the rule set and classifier were collaboratively used in the image classification. The Relief F algorithm was used to dimensionally reduce the spectral, texture and all feature variables, and to select 3 feature subsets. Then the RF model was conducted with the 3 feature subsets and all feature subset to build 4 models. The 4 models were applied to extract land use information in Longkou city, and the results were compared. The result indicated that the OOB (Out of Bag) misclassification, classification accuracy and Kappa index were 0.0958, 89.37% and 0.872 respectively with the land use information extraction approach combining OBIA with RF, dimension reduction based on the Relief F algorithm only for texture features. This retained the complete spectral, geometric and spatial features, which has a higher accuracy. The approach can be applied to the extraction of land use information with the medium resolution satellite image.
土地利用信息 / 提取方法 / 面向对象 / Relief F降维 / 随机森林 / 龙口市 {{custom_keyword}} /
land use information / the extraction approach / object-based / Relief F algorithm dimensionally reduced / Random Forest / Longkou city {{custom_keyword}} /
表1 各地类样点像元数量Table 1 The number of samples for each land use type(单位:个) |
地类 | 城乡建设用地 | 耕地 | 林地 | 草地 | 园地 | 交通用地 | 未利用地及其他 | 总计 |
---|---|---|---|---|---|---|---|---|
训练样本 | 33118 | 30717 | 57932 | 16826 | 47798 | 4089 | 12567 | 192913 |
验证样本 | 16488 | 15366 | 28949 | 8412 | 22291 | 2032 | 6293 | 93173 |
表2 特征变量及编号Table 2 Feature variables and their number |
特征类别 | 特征变量及编号 | 合计/个 |
---|---|---|
光谱特征 | 1~9:2~6波段均值、MNDWI、NDVI、光谱最大差分Max. Diff 10~20:2~6波段方差、MNDWI方差、NDVI方差、TC 1~TC 3方差 21~23:TC 1~TC 3均值:Brightness、Wetness、Greenness | 23 |
几何特征 | 1~8:面积、边界指数、紧致度、长宽比、对称性、密度、矩形拟合度、形状指数 | 8 |
纹理特征 | 1~40:GLCM Ang. 2nd moment、GLCM Mean、GLCM Dissimilarity、GLCM Contrast、GLCM Homogeneity、GLCM Entropy、GLCM Correlation、GLCM StdDev (all dir.、0°、45°、90°、135°) 41~60:GLDV Ang. 2nd moment、GLDV Contrast、GLDV Entropy、GLDV Mean (all dir.、0°、45°、90°、135°) | 60 |
空间特征 | 1~3:5、6 波段和NDVI对象邻域的平均差分(绝对值) | 3 |
注:GLCM为灰度共生矩阵、GLDV为灰度差分矢量、And. 2nd moment为二阶矩、Mean为均值、Homogeneity为同质性、Dissimilarity为差异性、Entropy为熵、Correlation为相关性、Contrast为对比度、Entropy为熵、StdDev为方差。 |
表3 最优参数范围Table 3 The range of the optimal parameters |
参数 | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
ntree | (1,2,4,9,18) | (1,2,4,7,11) | (1,2,4,7,11) | (1,2,4,10,19) |
mtry | (135,140,145) | (138,148,158) | (137,144,151) | (140,150,160) |
表4 不同模型执行时间、OOB错分率和分类精度Table 4 The execution time, OOB misclassification and classification accuracy of different models |
分类模型 | 算法执行时间 | OOB错分率 | 总体精度/% | Kappa系数 |
---|---|---|---|---|
Model 1(SPE_RF) | 42 m 34 s | 0.1075 | 84.93 | 0.818 |
Model 2(TEX_RF) | 39 m 49 s | 0.0958 | 89.37 | 0.872 |
Model 3(ALL_RF) | 38 m 32 s | 0.1026 | 87.52 | 0.849 |
Model 4(ALL) | 47 m 21 s | 0.1028 | 87.16 | 0.845 |
表5 分类结果混淆矩阵Table 5 Confusion matrix of classification result(%) |
地物 类别 | 坑塘 水面 | 滩涂 | 草地 | 园地 | 耕地 | 未利用地及其他 | 林地 | 城乡建设用地 | 交通 用地 | 河流 | 水库 水面 | 未分类 | 用户 精度 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
坑塘水面 | 100 | 6.34 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.01 | |||||||
滩涂 | 0 | 61.77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.69 | |||||||
草地 | 0 | 1.39 | 76.44 | 4.33 | 3.41 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.83 | |||||||
园地 | 0 | 0 | 18.40 | 89.57 | 3.73 | 3.83 | 2.55 | 0 | 0 | 0 | 0 | 0 | 20.74 | |||||||
耕地 | 0 | 0 | 4.33 | 1.88 | 86.45 | 1.16 | 0 | 0.31 | 0 | 0 | 0 | 0 | 14.30 | |||||||
未利用地 及其他 | 0 | 22.61 | 0 | 0 | 6.41 | 75.10 | 0.76 | 2.24 | 0 | 0 | 0 | 0 | 5.85 | |||||||
林地 | 0 | 1.00 | 0.31 | 3.62 | 0 | 1.43 | 96.59 | 0 | 0 | 0 | 0 | 0 | 26.93 | |||||||
城乡建设 用地 | 0 | 1.52 | 0 | 0 | 0 | 17.64 | 0 | 92.72 | 8.61 | 0 | 0 | 0 | 15.34 | |||||||
交通用地 | 0 | 4.29 | 0.52 | 0.60 | 0 | 0.84 | 0.09 | 4.73 | 91.39 | 0 | 0 | 0 | 1.89 | |||||||
河流 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0.85 | |||||||
水库水面 | 0 | 1.07 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 1.58 | |||||||
未分类 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||
生产者 精度 | 100 | 61.77 | 76.44 | 89.57 | 86.45 | 75.10 | 96.59 | 92.72 | 91.39 | 100 | 100 |
表6 2014年龙口市各地类面积统计Table 6 Land area statistics of Longkou city in 2014 |
地类 | 耕地 | 园地 | 林地 | 草地 | 城乡建设用地 | 交通 用地 | 滩涂 | 河流 | 坑塘 水面 | 水库 | 未利用地 及其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
面积/hm2 | 17311.67 | 24079.97 | 14134.58 | 2568.03 | 17361.74 | 3577.91 | 1074.27 | 152.49 | 729.04 | 576.46 | 8538.84 |
比例/% | 19.21 | 26.72 | 15.69 | 2.85 | 19.27 | 3.97 | 1.19 | 0.17 | 0.81 | 0.64 | 9.48 |
[1] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
[
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
The authors have declared that no competing interests exist.
/
〈 |
|
〉 |