喀斯特小流域土壤有机碳密度空间异质性及影响因素

张珍明, 周运超, 黄先飞, 田潇

自然资源学报 ›› 2018, Vol. 33 ›› Issue (2) : 313-324.

PDF(904 KB)
PDF(904 KB)
自然资源学报 ›› 2018, Vol. 33 ›› Issue (2) : 313-324. DOI: 10.11849/zrzyxb.20161390
资源评价

喀斯特小流域土壤有机碳密度空间异质性及影响因素

  • 张珍明1, 周运超1, 2, *, 黄先飞1, 田潇1
作者信息 +

Spatial Distribution of Soil Organic Carbon Density and the Influencing Factors in a Karst Mountainous Basin

  • ZHANG Zhen-ming1, ZHOU Yun-chao1, 2, HUANG Xian-fei1, TIAN Xiao1
Author information +
文章历史 +

摘要

论文为阐明喀斯特小流域土壤有机碳密度分布格局及其主要影响因素,运用野外布点采样、实验室测定和地统计学分析相结合的方法,采用2 755个详细调查的剖面样地,共计23 536个土壤样品,定量研究了土壤有机碳密度的空间异质性及分布特征,并利用典范分析法分析了影响土壤有机碳密度的主要环境因子。结果表明:后寨河流域各层土壤有机碳密度随土壤深度的增加而逐渐降低,最大值为12.47 kg/m2,最小值为0.11 kg/m2,100 cm土壤深度有机碳密度平均值为12.11 kg/m2,高于全国100 cm土壤深度有机碳平均密度。流域土壤有机碳密度最佳拟合模型为高斯模型,呈中等强度空间相关,Kriging插值显示土壤碳密度高值区在东部区域,低值区在南部区域,表现为中部低、四周高的趋势。后寨河100 cm深度下土壤碳密度在不同植被类型、土地利用方式、土壤类型下表现出一定差异。土壤厚度与有机碳密度呈正相关,石砾含量、坡向、坡度、土壤容重、岩石裸露率与有机碳密度呈负相关。土壤厚度、岩石裸露率、石砾含量是影响后寨河流域土壤有机碳密度的主要因子,其中以土壤厚度影响最大。

Abstract

In order to illustrate the distribution pattern of soil organic carbon density (SOCD) and its main influencing factors in small karst watershed, this paper quantitatively analyzed the spatial heterogeneity and distribution characteristics of SOCD using 2 755 thoroughly investigated soil profiles consisting of 23 536 soil samples with geo-statistical analysis, and analyzed the major influencing factors of SOCD with canonical analysis. The result showed that the SOCD decreases gradually with soil depth’s increasing in the Houzhai Basin; in particular, the maximum value is 12.47 kg/m2 and the minimum value is 0.11 kg/m2. The average SOCD at 100 cm depth is 12.11 kg/m2, which is higher than the value at national level. An optimal fitting model for the SOCD in this basin is Gaussian model, showing a moderate spatial correlation. The Kriging interpolation suggested that the soil carbon density is higher in the east region, while lower in the south region, showing an ascending trend from the middle to the surrounding area. In the Houzhai Basin, the SOCD at the depth of 100 cm differs in soil with different vegetation types, different soil utilization types and different soil types. The soil thickness is positively correlated with organic carbon content, and gravel content, slope direction, slope, soil bulk density and the rock exposed rate are negatively correlated with organic carbon density. Soil thickness, rock coverage and gravel content are the principal influencing factors of SOCD in the Houzhai Basin, among which soil thickness has the greatest impact.

关键词

喀斯特 / 空间异质性 / 土壤有机碳密度 / 小流域

引用本文

导出引用
张珍明, 周运超, 黄先飞, 田潇. 喀斯特小流域土壤有机碳密度空间异质性及影响因素[J]. 自然资源学报, 2018, 33(2): 313-324 https://doi.org/10.11849/zrzyxb.20161390
ZHANG Zhen-ming, ZHOU Yun-chao, HUANG Xian-fei, TIAN Xiao. Spatial Distribution of Soil Organic Carbon Density and the Influencing Factors in a Karst Mountainous Basin[J]. JOURNAL OF NATURAL RESOURCES, 2018, 33(2): 313-324 https://doi.org/10.11849/zrzyxb.20161390
中图分类号: S153.6   

参考文献

[1] ELEANOR H, GARRY R W, SILVIA F B, et al. Stability and storage of soil organic carbon in a heavy-textured karst soil from south-eastern Australia [J]. Soil Research, 2014, 52: 47-51.
[2] GAU H S, HSIEH C Y, LIU C W. Application of grey correlation method to evaluate potential groundwater recharge sites [J]. Stochastic Environmental Research and Risk Assessment, 2006, 20(6): 407-501.
[3] 张伟, 王克林, 陈洪松, 等. 典型喀斯特峰丛洼地土壤有机碳含量空间预测研究 [J]. 土壤学报, 2012, 49(3): 601-606. [ZHANG W, WANG K L, CHEN H S, et al. Use of satellite information and GIS to predict distribution of soil organic carbon in depressions amid clusters of karts peaks. Acta Pedologica Sinica, 2012, 49(3): 601-606. ]
[4] PUGET P, LAL R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use [J]. Soil and Tillage Research, 2005, 80(2): 201-208.
[5] MARCOS R N, FABRICIO P P, JOSE A M D, et al. Optimum size in grid soil sampling for variable rate application in site-specific management [J]. Scientia Agricola, 2011, 63(3): 386-992.
[6] YU D S, ZHANG Z Q, YANG H, et al. Effect of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China [J]. Pedosphere, 2011, 21(2): 207-211.
[7] LAL R. Soil erosion and the global carbon budget [J]. Environment International, 2003, 29: 437-443.
[8] GRIGGS D J, NOGUER M. Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change [J]. Weather, 2002, 57(8): 267-269.
[9] LI Z P, HAN F X, SU Y, et al. Assessment of soil organic and carbonate carbon storage in China [J]. Geoderma, 2007, 138: 119-123.
[10] LIU Z T, LIU C Q, LANG Y C, et al. Dissolved organic carbon and its carbon isotope compositions in hill slope soils of the karst area of Southwest China: Implications for carbon dynamics in limestone soil [J]. Geochemical Journal, 2014, 48: 277-281.
[11] MAO D H, WANG Z M, LI L, et al. Soil organic carbon in the Sanjiang Plain of China: Storage, distribution and controlling factors [J]. Biogeosciences, 2015, 12: 1635-1641.
[12] QI Y B, DARILEK J L, HUANG B, et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China [J]. Geoderma, 2009, 149: 325-328.
[13] LIU Y G, LIU C C, WANG S J, et al. Organic carbon storage in four ecosystem types in the karst region of southwestern China [J]. Plos One, 2013, 8(2): e56443. doi:10.1371/journal.pone.0056443.
[14] 田丽艳, 郎赟超, 刘丛强, 等. 贵州普定喀斯特坡地土壤剖面有机碳及其同位素组成 [J]. 生态学杂志, 2013, 32(9): 2362-2367. [TIAN L Y, LANG Y C, LIU C Q, et al. Distribution patterns of organic carbon and its isotope compositions in soil profiles on the slopes in Puding karst areas of Guizhou Province, Southwest China. Chinese Journal of Ecology, 2013, 32(9): 2362-2367. ]
[15] HUANG Q H, CAI Y L, XING X S. Rocky desertification, antidesertification, and sustainable development in the karst mountain region of Southwest China [J]. AMBIO, 2008, 37(5): 390-395.
[16] 王世杰, 卢红梅, 周运超, 等. 茂兰喀斯特原始森林土壤有机碳的空间变异性与代表性土样采集方法 [J]. 土壤学报, 2007, 44(3): 475-483. [WANG S J, LU H M, ZHOU Y C, et al. Spatial variability of soil organic carbon and representative soil sampling method in Maolan karst forest. Acta Pedologica Sinica, 2007, 44(3): 475-483. ]
[17] 廖洪凯, 李娟, 龙健, 等. 贵州喀斯特山区花椒林小生境类型与土壤环境因子的关系 [J]. 农业环境科学学报, 2013, 32(12): 2429-2435. [LIAO H K, LI J, LONG J, et al. Soil characteristics of different microhabitats of Chinese prickly ash in karst mountain areas of Guizhou Province. Journal of Agro-Environment Science, 2013, 32(12): 2429-2435. ]
[18] 吴敏, 刘淑娟, 叶莹莹, 等. 典型喀斯特高基岩出露坡地表层土壤有机碳空间异质性及其储量估算方法 [J]. 中国生态农业学报, 2015, 23(6): 676-685. [WU M, LIU S J, YE Y Y, et al. Spatial heterogeneity and storage assessment method of surface soil organic carbon in high bulk-rock ratio slopes of karst regions. Chinese Journal of Eco-Agriculture, 2015, 23(6): 676-685. ]
[19] 于雷, 魏东, 王惠霞, 等. 江汉平原县域尺度土壤有机质空间变异特征与合理采样数研究 [J]. 自然资源学报, 2016, 31(5): 855-864. [YU L, WEI D, WANG H X, et al. Spatial variability of soil organic matter and appropriate number of samples on county scale in Jianghan Plain. Journal of Natural Resources, 2016, 31(5): 855-864. ]
[20] 李阳兵, 王世杰, 程安云, 等. 岩溶地区土地利用和土地覆被与石漠化的相关性: 以后寨河地区为例 [J]. 中国水土保持科学, 2010, 8(1): 17-21. [LI Y B, WANG S J, CHEN A Y, et al. Relationship between land use/land cover and rocky desertification in karst areas: Houzhai catchments in Puding County, Guizhou Province an example. Science of Soil and Water Conservation, 2010, 8(1): 17-21. ]
[21] 张珍明, 周运超, 王世杰, 等. 喀斯特小流域土壤有机碳空间异质性及储量估算方法研 [J]. 生态学报, 2017, 37(22): 7647-7659. [ZHANG Z M, ZHOU Y C, WANG S J, et al. Study on spatial heterogeneity and reserve estimation of soil organic carbon in a small karst catchment. Acta Ecologica Sinica, 2017, 37(22): 7647-7659. ]
[22] 王政权. 地统计学及在生态学中的应用 [M]. 北京: 科学出版社, 1999. [WANG Z Q. Statistics and Its Application in Ecology. Beijing: Science Press, 1999. ]
[23] LI Y. Can the spatial prediction of soil organic matter contents at various sampling scales be improved by using regression Kriging with auxiliary information [J]. Geoderma, 2010, 159: 72-77.
[24] MI N, WANG S Q, LIU J Y, et al. Soil inorganic carbon storage pattern in China [J]. Global Change Biology, 2008, 14(10): 2380-2385.
[25] 张勇, 史学正, 赵永存, 等. 滇黔桂地区土壤有机碳储量与影响因素研究 [J]. 环境科学, 2008, 29(8): 2314-2319. [ZHANG Y, SHI X Z, ZHAO Y C, et al. Estimates and affecting factors of soil organic carbon storages in Yunnan-Guizhou-Guangxi Region of China. Chinese Journal of Environmental Science, 2008, 29(8): 2314-2319. ]
[26] 薛志婧, 马露莎, 安韶山, 等. 黄土丘陵区小流域尺度土壤有机碳密度及储量 [J]. 生态学报, 2015, 35(9): 2917-2925. [XUE Z J, MA L S, AN S S, et al. Soil organic carbon density and stock at the catchment scale of a hilly region of the Loess Plateau. Acta Ecologica Sinica, 2015, 35(9): 2917-2925. ]
[27] YU D S, ZHANG Z Q, YANG H, et al. Effect of soil sampling density on detected spatial variability of soil organic carbon in a red soil region of China [J]. Pedosphere, 2011, 21(2): 207-211.
[28] QI Y B, DARILEK J L, HUANG B, et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China [J]. Geoderma, 2009, 149: 325-329.
[29] ZHANG C S, MCGRATH D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods [J]. Geoderma, 2004, 119(3): 261-266.
[30] 张志霞, 许明祥, 刘京, 等. 黄土高原不同地貌区土壤有机碳空间变异与合理取样数研究 [J]. 自然资源学报, 2014, 29(12): 2103-2113. [ZHANG Z X, XU M X, LIU J, et al. Spatial variation and reasonable sampling number of soil organic carbon under different geomorphic types on the Loess Plateau. Journal of Natural Resources, 2014, 29(12): 2103-2113. ]
[31] 梁二, 蔡典雄, 张丁辰, 等. 中国陆地土壤有机碳储量估算及其不确定性分析 [J]. 中国土壤与肥料, 2010(6): 75-80. [LIANG E, CAI D X, ZHANG D C, et al. Terrestrial soil organic carbon storage in China: Estimates and uncertainty. Soil and Fertilizer in China, 2010(6): 75-80. ]
[32] XIAO K C, XU J M, TANG C X, et al. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electro kinesis and receiving crop residue amendments [J]. Soil Biology and Biochemistry, 2013, 67: 70-75.

基金

国家重大科学研究计划项目(2013CB956702); 贵州省一流学科建设项目(GNYL[2017]007); 贵州“百”层次人才计划〔黔科合人才(2015)4022号〕; 贵州省基础研究项目(QKH-JZ-2014-200203)
PDF(904 KB)

1357

Accesses

0

Citation

Detail

段落导航
相关文章

/