Effects of Human Activities on Net Primary Productivityin the Xilingol Grassland
ZHANG Jun, REN Hong-rui
Author information+
College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
2016-07-11
2016-10-10
2017-08-02
发布日期
2017-08-02
摘要
净初级生产力是草地生态系统生产能力的体现,同时也是草地生态系统固碳能力的重要指标。论文利用MOD17A3净初级生产力数据(NPP)与气象资料,分析了2001—2010年人类活动对锡林郭勒盟草原净初级生产力的影响。研究表明:1)锡林郭勒盟草原实际净初级生产力(NPPA)介于41.32~362.27 g C·m-2·a-1,均值为150.78 g C·m-2·a-1,有较明显的水平地带性规律,由东向西逐渐减小,草甸草原最大,典型草原次之,荒漠草原最小;2)锡林郭勒盟草原人类活动影响的净初级生产力(NPPH)介于-185.07~153.92 g C·m-2·a-1,均值为-34.80 g C·m-2·a-1,人类活动负作用占草原总面积的93.4%,人类活动正作用仅占6.6%;3)人类活动对锡林郭勒盟草原净初级生产力的影响主要是由负作用向正作用转变,且空间分布有明显的南北界线,南部表现为负作用增强,北部为正作用增强。研究可为锡林郭勒盟草地资源的管理和可持续利用提供参考依据。
Abstract
Net primary productivity is a key index of production capacity of grassland ecosystem, and is also an important indicator of carbon fixation of ecosystem. With MODIS MOD17A3 net primary productivity (NPP) data and meteorological data, we analyzed the effects of human activities on NPP in the Xilingol grassland from 2001 to 2010. NPPA (actual NPP) was influenced by both climate change and human activities. NPPA was mainly in the range of 41.32-362.27 g C·m-2·a-1 with average value of 150.78 g C·m-2·a-1, and showed horizontal zonal feature gradually decreasing from east to west. NPPA in the meadow steppe was the highest, followed by that in typical steppe, while NPPA in the desert steppe was the lowest. NPPH (NPP affected by human activities) was mainly in the range of -185.07- 153.92 g C·m-2·a-1 with average value of -34.80 g C·m-2·a-1 in the Xilingol grassland. Human activities had negative effects on 93.4% of the study area, and had positive effects on only 6.6% of the area. However, the impact of human activities on NPP is changing from negative effect to positive effect in most of the area. There is a boundary between the southern and the northern Xilingol grassland. The negative effect is strengthening in the southern area, while the positive effect is strengthening in the northern area. The study provided references for the management and sustainable utilization of grassland resources in the Xilingol.
ZHANG Jun, REN Hong-rui.
Effects of Human Activities on Net Primary Productivityin the Xilingol Grassland[J]. JOURNAL OF NATURAL RESOURCES, 2017, 32(7): 1125-1133 https://doi.org/10.11849/zrzyxb.20160736
[1] CRAMER W, FIELD C B. Comparing global models of terrestrial net primary productivity (NPP): Introduction [J]. Global Change Biology, 1999, 5(1): 46-55. [2] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components [J]. Science, 1998, 281: 237-240. [3] 吴珊珊, 姚治君, 姜丽光, 等. 基于MODIS的长江源植被NPP时空变化特征及其水文效应 [J]. 自然资源学报, 2016, 31(1): 39-51. [WU S S, YAO Z J, JIANG L G, et al. The Spatial-temporal variations and hydrological effects of vegetation NPP based on MODIS in the source region of the Yangtze River. Journal of Natural Resources, 2016, 31(6): 39-51. ] [4] SCURLOCK J M O, JOHNSON K, OLSON R J. Estimating net primary productivity from grassland biomass dynamics measurements [J]. Global Change Biology, 2002, 8(8): 736-753. [5] 姜春, 吴志峰, 程炯, 等. 广东省土地覆盖变化对植被净生产力的影响分析 [J]. 自然资源学报, 2016, 31(6): 961-972. [JIANG C, WU Z F, CHENG J, et al. Analyzing the effects of land cover change on vegetation net primary productivity in Guangdong Province. Journal of Natural Resources, 2016, 31(6): 961-972. ] [6] 易浪, 任志远, 张翀, 等. 黄土高原植被覆盖变化与气候和人类活动的关系 [J]. 资源科学, 2014, 36(1): 166-174. [YI L, REN Z Y, ZHANG C, et al. Vegetation cover, climate and human activities on the Loess Plateau. Resources Science, 2014, 36(1): 166-174. ] [7] 李辉霞, 周红艺, 魏兴琥. 基于RUE和NDVI的人类活动对植被干扰强度分析——以桂西北为例 [J]. 中国沙漠, 2014, 34(3): 927-937. [LI H X, ZHOU H Y, WEI X H. Analysis of the impact of human disturbance on vegetation based on RUE and NDVI: A case study in Northwest Guangxi, China. Journal of Desert Research, 2014, 34(3): 927-937. ] [8] 张登山. 青海共和盆地土地沙漠化影响因子的定量分析 [J]. 中国沙漠, 2000, 20(1): 59-62. [ZHANG D S, Quantitative analysis of influential factors on land desertification in Qinghai Gonghe Basin. Journal of Desert Research, 2000, 20(1): 59-62. ] [9] LI A, WU J G, HUANG J H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in Inner Mongolia [J]. Landscape Ecology, 2012, 27: 969-982. [10] GEERKEN R, ILAIWI M. Assessment of rangeland degradation and development of a strategy for rehabilitation [J]. Remote Sensing of Environment, 2004, 90: 490-504. [11] PRINCE S D, BROWN DE COLSTOUN E, KRAVITZ LL. Evidence from rain-use efficiency does not indicate extensive Sahelian desertification [J]. Global Change Biology, 1998, 4: 359-374. [12] 李传华, 赵军, 师银芳, 等. 基于变异系数的植被NPP人为影响定量研究——以石羊河流域为例 [J]. 生态学报, 2016, 36(13): 4034-4044. [LI C H, ZHAO J, SHI Y F, et al. The impact of human activities on net primary productivity based on the coefficient of variation: A case study of the Shiyang River Basin. Acta Ecologica Sinica, 2016, 36(13): 4034-4044. ] [13] 巴图娜存, 胡云锋, 艳燕, 等. 1970年代以来锡林郭勒盟草地资源空间分布格局的变化 [J]. 资源科学, 2012, 34(6): 1017-1023. [BATUNACUN, HU Y F, YAN Y, et al. The variations and its spatial pattern of grassland changes in Xilinguole from 1975 to 2009. Resources Science, 2012, 34(6): 1017-1023. ] [14] 穆少杰, 李建龙, 杨红飞, 等. 内蒙古草地生态系统近10年NPP时空变化及其与气候的关系 [J]. 草业学报, 2013, 22(3): 6-15. [MU S J, LI J L, YANG H F, et al. Spatio-temporal variation analysis of grassland net primary productivity and its relationship with climate over the past 10 years in Inner Mongolia. Acta Prataculturae Sinica, 2013, 22(3): 6-15. ] [15] 金云翔, 徐斌, 杨秀春, 等. 内蒙古锡林郭勒盟草原产草量动态遥感估算 [J]. 中国科学C辑(生命科学), 2011, 41(12): 1185-1195. [JIN Y X, XU B, YANG X C, et al. Remote sensing dynamic estimation of grass production in Xilinguole, Inner Mongolia. Science in China Series C (Life Sciences), 2011, 41(12): 1185-1195. ] [16] 陈效逑, 王恒. 1982—2003年内蒙古植被带和植被覆盖度的时空变化 [J]. 地理学报, 2009, 64(1): 84-94. [CHEN X Q, WANG H. Spatial and temporal variations of vegetation belts and vegetation cover degrees in Inner Mongolia from 1982 to 2003. Acta Geographica Sinica, 2009, 64(1): 84-94. ] [17] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究 [J]. 植物生态学报, 1996, 20(1): 11-19. [ZHOU G S, ZHANG X S. Study on NPP of natural vegetation in China under global climate change. Acta Phytoecologica Sinica, 1996, 20(1): 11-19. ] [18] 池源, 石洪华, 王晓丽, 等. 庙岛群岛南五岛生态系统净初级生产力空间分布及其影响因子 [J]. 生态学报, 2015, 35(24): 8094-8106. [CHI Y, SHI H H, WANG X L, et al. The spatial distribution and impact factors of net primary productivity in the island ecosystem of five southern islands of Miaodao Archipelago. Acta Ecologica Sinica, 2015, 35(24): 8094-8106. ] [19] 蒋冲, 王飞, 穆兴民, 等. 气候变化对渭河流域自然植被净初级生产力的影响研究(Ⅱ) ——渭河流域自然植被净初级生产力的研究 [J]. 干旱区资源与环境, 2013, 27(5): 53-57. [JIANG C, WANG F, MU X M, et al. Effect of climate change on net primary productivity (NPP) of natural vegetation in Wei River Basin(Ⅱ)—NPP of natural vegetation in Wei River Basin. Journal of Arid Land Resources and Environment, 2013, 27(5): 53-57. ] [20] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算 [J]. 中国科学D辑(地球科学), 2007, 37(6): 804-812. [FANG J Y, GUO Z D, PAO S L, et al. Terrestrial vegetation carbon sinks in China. Science in China Series D (Earth Sciences), 2007, 37(6): 804-812. ] [21] NI J. Forage yield-based carbon storage in grasslands of China [J]. Climate Change, 2004, 67(2/3): 237-246. [22] 马文红, 杨元合, 贺金生, 等. 内蒙古温带草地生物量及其与环境因子的关系 [J]. 中国科学C辑(生命科学), 2008, 38(1): 84-92. [MA W H, YANG Y H, HE J S, et al. Relationship between temperate grassland biomass and environmental factors in Inner Mongolia. Science in China Series C (Life Sciences), 2008, 38(1): 84-92. ] [23] 张峰, 周广胜, 王玉辉. 基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟 [J]. 植物生态学报, 2008, 32(4): 786-797. [ZHANG F, ZHOU G S, WANG Y H. Dsimulation of net primary productivity by a satellite data-driven casa model in Inner Mongolian typical steppe. Journal of Plant Ecology, 2008, 32(4): 786-797. ] [24] 胡中民, 樊江文, 钟华平, 等. 中国温带草地地上生产力沿降水梯度的时空变异性 [J]. 中国科学D辑(地球科学), 2006, 36(12): 1154-1162. [HU Z M, FAN J W, ZHONG H P, et al. Spatiotemporal dynamics of aboveground primary productivity along a precipitation gradient in Chinese temperate grassland. Science in China Series D (Earth Science), 2006, 36(12): 1154-1162. ]