论文以黄土丘陵区安塞实验站微地形(阳坡坡上、中、下部,坡顶,阴坡坡上、中、下部)条件下的草地群落为研究对象,测定群落叶片及不同土层根系和土壤碳(C)、氮(N)、磷(P)含量,试图揭示微地形(坡向和坡位)对植物叶片、根系和土壤生态化学计量特征的影响。结果表明:研究区草本群落叶片C、N、P含量和C/N、C/P、N/P化学计量比的平均值分别为433.47、24.84、1.61 g/kg和18.18、320.36、17.41,叶片N/P值表明黄土丘陵区植物生长更易受P限制;根系C、N、P含量及C/N、C/P、N/P计量比的平均值分别为380.05、9.07、0.31 g/kg和49.61、1 326.64、30.73。叶片及根系C、N、P含量在不同坡向都表现出阴坡大于阳坡的现象。植物与土壤作为生物地球化学循环的不同环节,两者之间必然存在联系。论文相关分析表明:0~20、20~50、50~80、80~100 cm 4个分层的土壤C、N、P含量与叶片及根系化学计量特征之间都有不同程度的相关关系,特别是表层土壤C、N、P含量与叶片及根系C、N、P含量相关性较好。
Abstract
The research measured the carbon (C), nitrogen (N), phosphorus (P) content of plant leaf, root and soil at different slope aspects (sunny slope & shady slope) and different slope positions (top, upper, middle and lower) at Ansai Experiment Station. The effects of micro-topography on stoichiometric characteristics of plants and soil in the hilly Loess Plateau region were revealed. The results showed that the average leaf C, N and P contents were 433.47, 24.84 and 1.61 g/kg respectively, the leaf C/N, C/P and N/P stoichiometric ratios were 18.18, 320.36 and 17.41 respectively. The value of leaf N/P showed that the growth of plants was restricted by P in hilly Loess Plateau region. The root C, N and P contents were 380.05, 9.07 and 0.31 g/kg respectively, and the stoichiometric ratios of root C/N, C/P and N/P were 49.61, 1 326.64 and 30.73 respectively. Leaf and root C, N and P contents in shady slope were all greater than those in sunny slope, and those in top slope were the least. In shady slope, the C, N and P contents of leaf and root in different positions were in the order of lower slope > middle slope > upper slope > top slope. Soil C, N and P contents at different slope aspects were in the order of shady slope > sunny slope > top slope. Soil C, N and P contents concentrated in the 0-20 cm soil layer and decreased with soil depth. As the different part of biogeochemical cycle, plant and soil must have the contact. Correlation analysis showed that soil nutrients at different soil layers were correlated with the stoichiometric characteristics of leaf and root. Especially, the soil C, N and P contents at 0-20 cm layer had significantly positive correlation with leaf C, N and P contents (P<0.05), and also had significantly positive correlation with root N and P content (P<0.05), but had no significant correlation with root C content.
关键词
化学计量特征 /
黄土丘陵区 /
坡位 /
坡向
{{custom_keyword}} /
Key words
hilly Loess Plateau region /
slope aspect /
slope position /
stoichiometric characteristics
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J]. Ecological Applications, 2010, 20(1): 5-15.
[2] 李鑫, 曾全超, 安韶山, 等. 黄土高原纸坊沟流域不同植物叶片及枯落物的生态化学计量学特征研究 [J]. 环境科学, 2015,36(3): 1084-1091.
[3] 王振兴. 国内生态化学计量学研究进展 [J]. 绿色科技, 2011(7): 195-196.
[4] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征 [J]. 生态学报, 2008, 28(8): 3937-3947.
[5] HE J S, FANG J Y, WANG Z, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China [J]. Oecologia, 2006, 149(1): 115-122.
[6] HE J S, FANG J Y, FLYNN D F, et al. Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes [J]. Oecologia, 2008, 155(2): 301-310.
[7] 丁凡, 廉培勇, 曾德慧. 松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系 [J]. 生态学杂志, 2011, 30(1): 77-81.
[8] GILL R A, JACKSON R B. Global patterns of root turnover for terrestrial ecosystems [J]. New Phytologist, 2000, 147(1): 13-31.
[9] JACKSON R B, MOONEY H, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(14): 7362-7366.
[10] JACKSON R, CANADELL J, EHLERINGER J, et al. A global analysis of root distributions for terrestrial biomes [J]. Oecologia, 1996, 108(3): 389-411.
[11] 张文彦, 樊江文, 钟华平, 等. 中国典型草原优势植物功能群氮磷化学计量学特征研究 [J]. 草地学报, 2010, 18(4): 503-509.
[12] 任书杰, 于贵瑞, 姜春明, 等. 中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征 [J]. 应用生态学报, 2012, 23(3): 581-586.
[13] 任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究 [J]. 环境科学, 2007, 28(12): 2665-2673.
[14] KRAFT N J, VALENCIA R, ACKERLY D D. Functional traits and niche-based tree community assembly in an Amazonian forest [J]. Science, 2008, 322(5901): 580-582.
[15] GONG X, BRUECK H, GIESE K, et al. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China [J]. Journal of Arid Eenvironments, 2008, 72(4): 483-493.
[16] 杨士梭, 温仲明, 苗连朋, 等. 黄土丘陵区植物功能性状对微地形变化的响应 [J]. 应用生态学报, 2014, 25(12): 3413-3419.
[17] 鲍士旦. 土壤农化分析 [M]. 第三版. 北京: 中国农业出版社, 2000: 25-76, 264-271.
[18] 丁小慧, 罗淑政, 刘金巍, 等. 呼伦贝尔草地植物群落与土壤化学计量学特征沿经度梯度变化 [J]. 生态学报, 2012, 32(11): 3467-3476.
[19] ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs [J]. Nature, 2000, 408(6812): 578-580.
[20] ZHENG S X, SHANGGUAN Z P. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China [J]. Trees, 2007, 21(3): 357-370.
[21] HANW X, FANG J Y, GUO D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytologist, 2005, 168(2): 377-385.
[22] NORBY R J, JACKON R B. Root dynamics and global change: seeking an ecosystem perspective [J]. New Phytologist, 2000, 147(1): 3-12.
[23] SCHENK H J, JACKON R B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems [J]. Journal of Ecology, 2002, 90(3): 480-494.
[24] YUAN Z Y, CHEN H Y, REICH P B. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus [J]. Nature Communications, 2011, 2: 344.
[25] 曾冬萍, 蒋利玲, 曾从盛, 等. 生态化学计量学特征及其应用研究进展 [J]. 生态学报, 2013, 33(18): 5484-5492.
[26] 王振南, 杨惠敏. 植物碳氮磷生态化学计量对非生物因子的响应 [J]. 草业科学, 2013, 30(6): 927-934.
[27] 刘旻霞, 马建祖. 阴坡-阳坡梯度上的植物叶片N∶P化学计量学特征研究 [J]. 干旱地区农业研究, 2013, 31(3): 139-144, 177.
[28] 张彦军, 郭胜利, 南雅芳, 等. 黄土丘陵区小流域土壤碳氮比的变化及其影响因素 [J]. 自然资源学报, 2012, 27(7): 1214-1223.
[29] SIGUA G C, COLEMAN S W. Spatial distribution of soil carbon in pastures with cow-calf operation: Effects of slope aspect and slope position [J]. Journal of Soils and Sediments, 2010, 10(2): 240-247.
[30] 张志霞, 许明祥, 师晨迪, 等. 黄土丘陵区不同地貌单元土壤有机碳空间变异的尺度效应 [J]. 自然资源学报, 2014, 29(7): 1173-1184.
[31] YANG Y, FANG J, TANG Y, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands [J]. Global Change Biology, 2008, 14(7): 1592-1599.
[32] 刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征 [J]. 植物生态学报, 2010, 34(1): 64-71.
[33] SIGUA G C, COLEMAN S W, ALBANO J, et al. Spatial distribution of soil phosphorus and herbage mass in beef cattle pastures: Effects of slope aspect and slope position [J]. Nutrient Cycling in Agroecosystems, 2011, 89(1): 59-70.
[34] 邹俊亮, 郭胜利, 李泽, 等. 小流域土壤有机碳的分布和积累及土壤水分的影响 [J]. 自然资源学报, 2012, 27(3): 430-439.
[35] 张庆, 牛建明, BUYANTUYEV A, 等. 不同坡位植被分异及土壤效应——以内蒙古短花针茅草原为例 [J]. 植物生态学报, 2011, 35(11): 1167-1181.
[36] 杜峰, 梁宗锁, 徐学选, 等. 陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应 [J]. 生态学报, 2008, 28(1): 13-22.
[37] 南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳、氮变化的影响 [J]. 植物营养与肥料学报, 2012, 18(3): 595-601.
[38] YUAN Z Y, CHEN H Y. Global trends in senesced-leaf nitrogen and phosphorus [J]. Global Ecology and Biogeography, 2009, 18(5): 532-542.
[39] 郭志强, 闫德民. 采矿迹地优势菊科植物叶片及细根氮、磷含量的季节变化 [J]. 河南农业大学学报, 2013, 47(4): 409-413.
[40] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001-11006.
[41] GUSEWELL S. N: P ratios in terrestrial plants: variation and functional significance [J]. New Phytologist, 2004, 164(2): 243-266.
[42] 李玉霖, 毛伟, 赵学勇, 等. 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究 [J]. 环境科学, 2010, 31(8): 1716-1725.
[43] 王凯博, 上官周平. 黄土丘陵区燕沟流域典型植物叶片 C, N, P 化学计量特征季节变化 [J]. 生态学报, 2011, 31(17): 4985-4991.
[44] 刘旻霞, 王刚. 高山草甸坡向梯度上植物群落与土壤中的N, P化学计量学特征 [J]. 兰州大学学报(自然科版), 2012, 38(3): 70-75.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目(41271043,31370455); 国家重点研发计划项目(2016YFA0600801)
{{custom_fund}}