利用中国区域的GIMMS NDVI数据集和相应时期气象站点实测的温度数据集,分别在时间尺度和空间地域上对比分析植被生长过程与环境温度变化的关系,并由此提取区域植被生长关键阶段对应的温度,最后得到了中国各生态地理区植被生长的最适温度及其变化区间。结果显示:①研究首次给出了不同生态区植被生长的最适温度,其中青藏高原的参考最适温度最低,在10 ℃左右,而长江中下游和华南地区的较高,很多区域的值都超过了25 ℃,说明植被生长的最适温度具有很强的地域分异性;②根据论文结果,通过海拔高度和纬度两个地理因子,可快速拟合得到中国陆地植被生长的近似最适温度。研究结果可以为生态系统模型的参数本地化和空间化提供参考。
Abstract
The photosynthetic optimum temperature for vegetation growth means the ambient temperature is most conducive to plant growth. In this study, GIMMS NDVI data set and daily temperature data set measured by 752 meteorological stations in China from 1982 to 2006 were used to contrastively analyze the relationship between the NDVI and temperature change characteristics at both spatial and temporal scale. Based on the analysis, we extracted the corresponding temperatures in the process of vegetation growth phase. And finally the optimum temperature range and reference optimum temperatures of Chinese various terrestrial eco-geographical regions were obtained. The study firstly provides a scientific calculation framework and produces the reference optimum temperature of different regions. The relationship between terrestrial vegetation growth and the ambient temperature are close, and the optimum temperatures are distinct in different eco-geographical regions. Thereinto, the lowest temperatures appear in the Qinghai-Tibet Plateau eco-geographical regions, about 10 ℃. While the highest optimum temperatures appear in the middle and lower reaches of the Yangtze River and South China regions, their values are more than 25 ℃. Moreover, the reference optimum temperature can be availably estimated by two related factors, elevation and latitude. Our results can provide useful references for model parameterization.
关键词
生态地理区 /
最适温度 /
GIMMS NDVI /
气候 /
中国
{{custom_keyword}} /
Key words
eco-geographical regions /
optimum temperature /
GIMMS NDVI /
climate /
China
{{custom_keyword}} /
中图分类号:
P467
X16
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其与气候变化关系的研究.北京:北京师范大学,2005.
[2] Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1980,31(1):491-543.
[3] Chapin F S III. Direct and indirect effects of temperature on Arctic plants [J]. Polar Biology,1983,2:47-52.
[4] Schwartz M D. Green-wave phenology [J]. Nature,1998,394:839-840.
[5] Tucker C J, Slayback D A, Pinzon J E, et al. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999 [J]. International Journal of Biometeorology,2001,45:184-190.
[6] Zhou L, Kaufmann R K, Tian Y, et al. Relation between interannual variations in satellite measures of vegetation greenness and climate between 1982 and 1999 [J]. Journal of Geophysical Research,2003,108(D1):4004.
[7] Häninnen H. Effects of climatic change on trees from cool and temperate regions: An eco-physiological approach to modeling of budburst phenology [J]. Canadian Journal of Botany—Revue Canadienne de Botanique,1994,73:183-199.
[8] Rea R, Eccel E. Phenological models for blooming of apple in a mountainous region [J]. International Journal of Biometeorology,2006,51:1-16.
[9] 刘敏.基于RS和GIS的陆地生态系统生产力估算及不确定性研究——以青藏高原草地样带为例.南京:南京师范大学, 2008.
[10] Prince S D, Goward S N. Global primary production: A remote sensing approach [J]. Journal of Biogeography,1995,22:815-835.
[11] 陈卓奇.青藏高原草地生态系统承载力与承载力研究.北京:中国科学院研究生院,2009.
[12] Scott D. Relative growth rates under controlled temperatures of some New Zealand indigenous and introduced grasses [J]. New Zealand Journal of Botany, 1970,8:76-81.
[13] Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991 [J]. Nature, 1997,386:698-702.
[14] Julien Y, Sobrino J A. Global land surface phenology trends form GIMMS database [J]. International Journal of Remote Sensing, 2009,30(13):3495-3513.
[15] Schwartz M D, Chen X Q. Examining the onset of spring in China [J]. Climate Research,2002,12:157-164.
[16] Chen X Q, Hu B, Yu R. Spatial and temporal variation of phonological growing season and climate change impacts in temperate eastern China [J]. Global Change Biology,2005,11:1118-1130.
[17] Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China's temperate vegetation [J]. Global Change Biology,2006,12:672-685.
[18] 郑度,李炳元.中国生态地理区图[M].北京:商务印书馆,2005.
[19] Jönsson P, Eklundh L. Seasonality extraction and noise removal by function fitting to time-series of satellite sensor data [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1824-1832.
[20] Jönsson P, Eklundh L. Timesat—A program for analyzing time-series of satellite sensor data [J]. Computational Geosciences, 2004,30:833-845.
[21] Eklundh L, Jönsson P. Timesat 3.0 Software Manual [M]. Lund University, Sweden,2009.
[22] Michael A W, Peter P E, Stevin W R. A continental phenology model for monitoring vegetation responses to interannual climatic variability [J]. Global Biogeochemical Cycles,1997,11(2):217-234.
[23] Nagai S, Nasahara K N, Muraoka H, et al. Field experiments to test the use of the normalized-difference vegetation index for phenology detection [J]. Agricultural and Forest Meteorology,2010,150:152-160.
[24] 刘纪远,张增祥,庄大方,等.20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究,2003,22(1):1-12.
[25] 王宏,李晓兵,李霞,等.基于NOAA NDVI和MSAVI研究中国北方植被生长季变化[J].生态学报,2007,27(2):504-515.
[26] Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants [J]. Science,2002,296:1689-1691.
[27] Liu J, Liu M, Tian H, et al. Spatial and temporal patterns of China's cropland during 1990-2000: An analysis based on Landsat TM data [J]. Remote Sensing of Environment,2005,98:442-456.
[28] 孙艳玲,郭鹏,延晓冬,等.内蒙古植被覆盖变化及其与气候、人类活动的关系[J].自然资源学报,2010,25(3):407-414.
[29] 李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2000.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(40971223);国家重点基础研究发展计划(2010CB950900);中国科学院知识创新方向性项目(KZCX2-EW-306)。
{{custom_fund}}