利用1999—2009年的探空资料分析北京地区对流层大气水汽资源的垂直层结特征,采用韦伯和指数分布拟合大气水汽密度的概率密度函数。初步结果表明,各层拟合均通过卡方拟合优度检验,拟合相关系数高,精度高,均方根误差小;韦伯和指数拟合平均相关系数分别为0.93、0.95;拟合均方根误差分别为0.009、 0.01 g/m3,北京地区大气水汽资源的垂直分布符合指数分布规律;有降水时,对流层水汽密度有一定的垂直层状结构,无降水时,水汽密度随高度增加递减。
Abstract
The paper analyzes the water vapor vertical stratification characteristics in Beijing using the radiosonde datum from 1999 to 2009 and uses the Weibull and exponential distribution to fit the water vapor content probability density to study the vertical distribution of the atmospheric water vapor content. The preliminary results is as follows: all the fitting passed the chi-square goodness of fit test with good correlation coefficients, high accuracy and low root mean square errors; average fitting correlation coefficients of Weibull and exponential distribution were 0.93 and 0.95 respectively; and the fitting root mean square errors were 0.009 and 0.01 g/m3 separately. The vertical distribution of atmospheric water vapor resource of Beijing agreed with Weibull distribution. The water vapor content agreed with some stratification structure on rainy day and decreased with the height on sunny day.
关键词
大气水汽资源 /
无线电探空 /
韦伯分布 /
指数分布
{{custom_keyword}} /
Key words
atmospheric water vapor resource /
radiosonde /
Weibull distribution /
exponential distribution
{{custom_keyword}} /
中图分类号:
P412.2
P426.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁宏,刘晶淼,李世奎.青藏高原及周边地区大气水汽资源分布和季节变化特征分析[J].自然资源学报,2006, 21(4):527-534.
[2] Bevis M, Businger S, Herring T, et al. GPS Meteorology: Remote sensing of atmospheric water vapor using the global positioning system [J].Journal of Geophysical Research,1992,97(D14):15787-15801.
[3] Rocken C, Ware R, Hove T V, et al. Sensing atmospheric water vapor with the global positioning system [J].Geophysical Research Letters,1993,20(23):2631-2634.
[4] DING Jin-cai, YANG Yin-ming, YE Qi-xin, et al. Moisture analysis of a squall line case based on precipitable water vapor data from a ground-based GPS network in the Yangtze River Delta [J]. Advances Atmospheric Sciences,2007,24(3): 409-420.
[5] Larry M Miloshevich, Holger Vmel, David N Whiteman, et al. Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation [J]. Journal of Geophysical Research,2006,111(D09S10):1-25.
[6] Ferrare R A, Melfi S H, Whiteman D N, et al. Comparison of water vapor measurements made by raman lidar and radiosondes [J]. Journal of Atmospheric and Oceanic Technology,1995,12:1177-1195.
[7] Dian J Gaffen, William P Elliott, Altan Robock. Relationships between tropospheric water vapor and surface temperature as observed by radiosondes [J]. Geophysical Research Letters,1992,19(18):1839-1842.
[8] Hogg D C, Decker M T, Guiraud F O, et al. An automatic profiler of the temperature, wind and humidity in the troposphere [J]. Journal of Climate and Applied Meteorology,1983,22:807-831.
[9] Randolph Ware, Richard Carperter, Jürgen Güldner, et al. A multichannel radiometric profiler of temperature, humidity, and cloud liquid [J]. Radio Science,2003,38(4):44-1-44-13.
[10] David Bolton. The computation of equivalent potential temperature [J]. Monthly Weather Review,1980,108:1046-1053.
[11] 盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2005.
[12] Mesnard F, Sauvageot H. Structural characteristics of rain fields [J]. Journal of Geophysical Research,2003,108:4385.
[13] Foster J, Bevis M, Raymond W. Precipitable water and the lognormal distribution [J]. Journal of Geophysical Research, 2006,111:D15102.
[14] Alia Iassamen, Henri Sauvageot, Nicolas Jeannin, et al. Distribution of tropospheric water vapor in clear and cloudy conditions from microwave radiometric profiling [J]. Journal of Applied Meteorology and Climatology,2008,48:600-615.
[15] Flores A, Student Member, IEEE, et al. Tomography of the lower troposphere using a small dense network of GPS receivers [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(2):439-447.
[16] Miidla P, Rannat K, Uba P. Tomographic approach for tropospheric water vapor detection [J]. Computational Methods in Applied Mathematics,2008,8(3):263-278.
[17] Braun J, Rocken C. Water vapor tomography within the planetary boundary layer using GPS . International Workshop on GPS Meteorology. GPS Meteorology: Ground-Based and Space-Borne Application, Japan, 2003:3-09-1-3-09-4.
[18] 梁丰,李成才,王迎春,等.应用区域地基全球定位系统观测分析北京地区大气总水汽密度[J].大气科学,2003,27(2):237-244.
[19] 柳典,刘晓阳.地基GPS遥感观测北京地区水汽变化特征[J].应用气象学报,2009,20(3):347-352.
[20] 曹玉静,刘晶淼,梁宏,等.基于地基GPS层析大气水汽资源的方法研究[J].自然资源学报,2010,25(10):1787-1796.
[21] Flores A, Ruffini G, Rius A. 4D tropospheric tomography using GPS slant wet delays [J]. Annales Geophysicae,2000,18: 223-234.
[22] 宋淑丽,朱文耀,丁金才,等.上海GPS层析水汽三维分布改善数值预报湿度场[J].科学通报,2005,50(20):2271-2277.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
自然科学基金面上项目(40775020);中国气象局新技术推广项目(CMATG2007Z05)。
{{custom_fund}}