自然资源学报 ›› 2022, Vol. 37 ›› Issue (2): 307-319.doi: 10.31497/zrzyxb.20220203
王红瑞1,2(), 赵伟静1,2, 邓彩云1,2, 闫佳伟1,2
收稿日期:
2020-12-22
修回日期:
2021-04-03
出版日期:
2022-02-28
发布日期:
2022-02-16
作者简介:
王红瑞(1963- ),男,河南新乡人,博士,教授,研究方向为水资源系统分析和环境规划与评价。E-mail: henrywang@bnu.edu.cn
基金资助:
WANG Hong-rui1,2(), ZHAO Wei-jing1,2, DENG Cai-yun1,2, YAN Jia-wei1,2
Received:
2020-12-22
Revised:
2021-04-03
Online:
2022-02-28
Published:
2022-02-16
摘要:
水、能源、粮食均为战略性、基础性资源,三者之间相互关联,彼此制约,深刻影响着人类的生产、生活和生态环境。通过梳理水—能源—粮食纽带关系领域的研究内容、研究方法、研究尺度等,进一步明确了变化环境影响下水—能源—粮食纽带关系概念框架及其风险关系的传递与表达,指出当前对水—能源—粮食纽带关系理解尚未统一,广泛采用的有“联系论”和“方法论”。现有研究对水—能源—粮食纽带关系进行了现状评估,资源间相互消耗关系的量化与不同情景下的仿真模拟。研究中存在数据缺失、不一致,评估因素单一,缺少动态反馈机制,难以真正应用到政策调控中等问题。因此,数据整合、模型集成、风险评估与动态调节、提高韧性、城市尺度研究和智慧管理,均是水—能源—粮食纽带关系发展关注的重点领域。
王红瑞, 赵伟静, 邓彩云, 闫佳伟. 水—能源—粮食纽带关系若干问题解析[J]. 自然资源学报, 2022, 37(2): 307-319.
WANG Hong-rui, ZHAO Wei-jing, DENG Cai-yun, YAN Jia-wei. Analysis on issues of water-energy-food nexus[J]. JOURNAL OF NATURAL RESOURCES, 2022, 37(2): 307-319.
表1
水—能源—粮食纽带关系模拟预测研究
研究方法 | 文献 | 研究切入点 | 研究区 |
---|---|---|---|
多主体模型(ABM) | [ | 主体偏好对粮食生产、水力发电和生态系统健康的影响 | 湄公河流域和尼日尔河流域 |
系统动力学(SD) | [ | 调整粮食种植结构、发展生物质能 | 山东省 |
[ | 人口规模、经济发展水平 | 中国 | |
[ | 生活方式改变、家庭收入、家庭规模、电器功率和季节变化 | 伊拉克杜霍克市419个家庭 | |
水文和作物生长模拟模型耦合经济优化模型 | [ | 不同气候情景下在水力发电、农作物生产和减少洪灾损失方面的收益 | 水库和水电站 |
印度河流域模型(IBMR)耦合水利农业经济模型 | [ | 气候变化、水资源分配机制、水利基础设施发展 | 印度河流域 |
水资源规划与评估模型 (WEPA) | [ | 未来气候情景、社会经济变化 | 苏特莱杰河流域和比斯河流域 |
多部门系统分析(MSA) | [ | 城市代谢角度的资源通量估算 | 伦敦 |
协同优化模型 | [ | 水资源调配、能源开发和粮食生产 | 黄河流域 |
水资源管理模拟器,多目标规划模型 | [ | 供水和灌溉、能源生产和维护生态系统服务的管理优化 | 肯尼亚塔纳河流域 |
一般均衡模型,国际农产品贸易政策分析模型(IMPACT) | [ | 气候政策(征收碳税、扩大生物燃料生产)影响下的能源价格变化对水和粮食的影响 | 全球 |
表2
水—能源—粮食纽带关系集成工具
文献 | 研究方法 | 工具介绍 | 应用尺度 | 优势与不足 |
---|---|---|---|---|
[ | CLEWs | CLEWs使用模块化结构集成现有的仿真工具,将LEAP(SEI的远程能源替代计划工具),WEAP(SEI的水评估和规划工具)和AEZ(IIASA和FAO的农业生态区划模型)与气候变化情景相结合 | 全球尺度模型 | 在碳税政策与不同气候情景的模拟下,能够输出耗水量、能耗量、CO2排放量与能源材料的总投资,但未输出粮食或土地的相关响应 |
[ | WEF Nexus Tool 2.0 | 用于评估不同方案并确定可持续的资源分配模式,能够量化不同场景下的水、能源、土地的需求,财务成本以及碳排放情况 | 全球尺度模型 | 不能模拟各要素之间的反馈分析 |
[ | WEFSiM | WEFSiM针对给定未来自然变化(例如气候变化)和社会变化(例如人口波动)的情景,模拟未来的资源供应与需求 | 全球尺度模型 | 能够执行反馈(双向)分析,以识别可用资源和需求的实际数量,并进一步识别影响资源可用性的关键因素。但当降尺度应用时,需要开发相应区域的数据库 |
[ | Q-Nexus | Q-Nexus可用来量化水、能源、粮食直接和间接关系 | 全球尺度模型 | 未考虑经济与生态系统对WEF Nexus的影响 |
[ | MuSIASEM | MuSIASEM工具通过分析水、能源和粮食的代谢模式特征以及社会经济和生态变量模拟了毛里求斯共和国的生物燃料生产方案,印度旁遮普邦的未来谷物生产勘探以及南非共和国的电力生产替代方案评估 | 大区域规模模型 | 量化了人口,土地利用和发电能力与粮食、能源和水之间的关系,同时考虑了资金收益和环境影响,但未考虑气候变化等因素 |
[ | NexSym | NexSym集成了三个主要组成部分(即生态,技术和消费组成部分)以计算本地水—能源—粮食的消耗和供应 | 英国本地模型 | 模拟集中在资源消耗和环境影响上 |
[ | PRIMA | PRIMA耦合了区域气候,水文学,农业和土地利用,社会经济学和能源系统模型 | 美国东部区域模型 | 尚未包括某些重要组成部分,如能源系统的运输与电力分配,生态系统的生物多样性与入侵物种或人类的行为决策。受数据限制,其中详细的行业模型难以扩展,很难应用到其他地区 |
[ | WEFO | WEFO为多时段社会经济模型,用于预测如何根据生产成本、社会经济需求和环境控制等模型输入来预测水资源、能源和粮食的需求 | 微观模型(热电厂) | 仅考虑了能源供应、供水、食品生产、发电、减少CO2排放,未考虑对生态系统的影响 |
[1] | DUBOIS O, FAURÈS J, FELIX E, et al. The water-energy-food nexus: A new approach in support of food security and sustainable agriculture. Rome: Food and Agriculture Organization of the United Nations, 2014: 1-3. |
[2] | National Intelligence Council. Global Trends 2030: Alternative Worlds. United States: Washington DC, 2013: 30. |
[3] | 贾绍凤, 陈贵锋, 姜文来, 等. 对话贾绍凤研究员: 寻求水、能源、粮食安全共赢解决方案: 以内蒙古自治区鄂尔多斯市为例. 中国水利, 2017, ( 11):59-62. |
[ JIA S F, CHEN G F, JIANG W L, et al. Dialogue with Jia Shaofeng: Seeking win-win solutions for water, energy and food security: A case study of Ordos city, Inner Mongolia Autonomous Region. China Water Resources, 2017, ( 11):59-62.] | |
[4] | BAZILIAN M, ROGNER H, HOWELLS M, et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy, 2011,39(12):7896-7906. |
[5] | SIEBERT S, BURKE J, FAURES J M, et al. Groundwater use for irrigation: A global inventory. Hydrology and Earth System Sciences, 2010,14(10):1863-1880. |
[6] | International Energy Agency. World Energy Outlook 2012. Paris: International Energy Agency, 2012: 2. |
[7] | MAJEWSKI W. World water day 2014: Water & energy. Acta Energetica, 2014,19(2):91-97. |
[8] | 贾绍凤. 中国水治理的现状、问题和建议. 中国经济报告, 2018, ( 10):54-57. |
[ JIA S F. Current situation, problems and suggestions of water treatment in China. China Policy Review, 2018, ( 10):54-57.] | |
[9] | 姜珊, 赵勇, 尚毅梓, 等. 中国煤炭基地水与能源协同发展评估. 水电能源科学, 2016,34(11):40-43, 67. |
[ JIANG S, ZHAO Y, SHANG Y Z, et al. Balancing development of thermal power with available water resources in major coal bases of China. Water Resources and Power, 2016,34(11):40-43, 67.] | |
[10] | 洪思扬, 王红瑞, 来文立, 等. 我国能源耗水空间特征及其协调发展脱钩分析. 自然资源学报, 2017,32(5):800-813. |
[ HONG S Y, WANG H R, LAI W L, et al. Spatial analysis and coordinated development decoupling analysis of energy-consumption water in China. Journal of Natural Resources, 2017,32(5):800-813.] | |
[11] | SHARMA B R, VILLHOLTH K G, SHARMA K D. Groundwater Research and Management: Integrating Science into Management Decisions. India: Malhotra Publishing House, 2006: 62-87. |
[12] | SCOTT C A, KURIAN M, WESCOAT J L. Governing the Nexus: Water Soil and Waste Resources Considering Global Change. America: Springer International Publishing, 2015: 15-38. |
[13] | SIEGFRIED T U, FISHMAN R, MODI V, et al. An entitlement approach to address the water-energy-food nexus in rural India. In: San Francisco. American Geophysical Union Fall Meeting, 2008. |
[14] | HOFF H. Understanding the nexus: Background paper for the Bonn 2011 Nexus Conference: The water, energy and food security nexus. Nexus Conference: The water, energy and food security nexus. Bonn: Stockholm Environment Institute, 2011: 7-18. |
[15] | WAUGHRAY D. Water Security the Water-food-energy-climate Nexus: The World Economic Forum Water Initiative. Saint Louis: Island Press, 2011: 1-17. |
[16] | FERROUKHI R, NAGPAL D, LOPEZ-PEÑA A, et al. Renewable energy in the water, energy & food nexus. Abu Dhabi: IRENA, 2015: 51-84. |
[17] | United Nations. Transforming our world: The 2030 agenda for sustainable development. Journal of the South African Institution of Civil Engineering, 2016,24(1):26-30. |
[18] | DE ANDRADE GUERRA J B S O, BERCHIN I I, GARCIA J, et al. A literature-based study on the water-energy-food nexus for sustainable development. Stochastic Environmental Research and Risk Assessment, 2021,35(1):95-116. |
[19] | United Nations Economic Commission for Europe(UNECE). Reconciling Resource Uses in Transboundary Basins: Assessment of the Water-Food-Energy-Ecosystems Nexus. Genva: United Nations Economic Commission for Europe (UNECE), 2015: 21-23. |
[20] | CONWAY D, VAN GARDEREN E A, DERYNG D, et al. Climate and southern Africa's water-energy-food nexus. Nature Climate Change, 2015,5(9):837-846. |
[21] | BIGGS E M, BRUCE E, BORUFF B, et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environmental Science & Policy, 2015,54(12):389-397. |
[22] | HALBE J, PAHL-WOSTL C, LANGE M A, et al. Governance of transitions towards sustainable development the water-energy-food nexus in Cyprus. Water International, 2015,40(5-6):877-894. |
[23] | ENDO A, BURNETT K, ORENCIO P M, et al. Methods of the water-energy-food nexus. Water, 2015,7(10):5806-5830. |
[24] | LASPIDOU C S, MELLIOS N, KOFINAS D. Towards ranking the water-energy-food-land use-climate nexus interlinkages for building a nexus conceptual model with a heuristic algorithm. Water, 2019,11(2):306. |
[25] | ZHANG X, VESSELINOV V V. Energy-water nexus: Balancing the tradeoffs between two-level decision makers. Applied Energy, 2016,183(23):77-87. |
[26] | MAYOR B, LÓPEZ-GUNN E, VILLARROYA F I, et al. Application of a water-energy-food nexus framework for the Duero River Basin in Spain. Water International, 2015,40(5-6):791-808. |
[27] | 孙才志, 阎晓东. 中国水资源—能源—粮食耦合系统安全评价及空间关联分析. 水资源保护, 2018,34(5):1-8. |
[ SUN C Z, YAN X D. Security evaluation and spatial correlation pattern analysis of water resources-energy-food nexus coupling system in China. Water Resources Protection, 2018,34(5):1-8.] | |
[28] | 赖玉珮. 中国水—能源—粮食协同需求的区域特征研究. 北京规划建设, 2019, ( 1):74-77. |
[ LAI Y P. Study on regional characteristics of water-energy-food collaborative demand in China. Beijing Planning Review, 2019, ( 1):74-77.] | |
[29] | DENG C Y, WANG H R, GONG S X, et al. Effects of urbanization on food-energy-water systems in mega-urban regions: A case study of the Bohai MUR, China. Environmental Research Letters, 2020, Doi: 10.1088/1748-9326/ab6fbb. |
[30] | 白景锋, 张海军. 中国水—能源—粮食压力时空变动及驱动力分析. 地理科学, 2018,38(10):1653-1660. |
[ BAI J F, ZHANG H J. Spatio-temporal variation and driving force of water-energy-food pressure in China. Scientia Geographica Sinica, 2018,38(10):1653-1660.] | |
[31] | 李桂君, 黄道涵, 李玉龙. 中国不同地区水—能源—粮食投入产出效率评价研究. 经济社会体制比较, 2017, ( 3):138-148. |
[ LI G J, HUANG D H, LI Y L. Evaluation on the efficiency of the input and output of water-energy-food in different regions of China. Comparative Economic & Social Systems, 2017, ( 3):138-148.] | |
[32] | YI J, GUO J, OU M, et al. Sustainability assessment of the water-energy-food nexus in Jiangsu province, China. Habitat International, 2020,95(1):102094, Doi: 10.1016/j.habitatint.2019.102094. |
[33] | KESKINEN M, SOMETH P, SALMIVAARA A, et al. Water-energy-food nexus in a transboundary river basin: The case of Tonle Sap Lake, Mekong River Basin. Water, 2015,7(10):5416-5436. |
[34] | EL-GAFY I. Water-food-energy nexus index: Analysis of water-energy-food nexus of crop's production system applying the indicators approach. Applied Water Science, 2017,7(6):2857-2868. |
[35] | 张杰, 郝春沣, 刘海滢, 等. 基于用水总量的水—能源—粮食关系解析. 南水北调与水利科技, 2020,18(1):194-201. |
[ ZHANG J, HAO C F, LIU H Y, et al. Analysis of the relationship between water, energy and food based on total water consumption. South-to-North Water Transfers and Water Science & Technology, 2020,18(1):194-201.] | |
[36] | SHERWOOD J, CLABEAUX R, CARBAJALES-DALE M. An extended environmental input-output lifecycle assessment model to study the urban food-energy-water nexus. Environmental Research Letters, 2017, Doi: 10.1088/1748-9326/aa83f0. |
[37] | MAHJABIN T, MEJIA A, BLUMSACK S, et al. Integrating embedded resources and network analysis to understand food-energy-water nexus in the US. Science of the Total Environment, 2020,709(12), Doi: 10.1016/j.scitotenv.2019.136153. |
[38] | OWEN A, SCOTT K, BARRETT J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Applied Energy, 2018,210(2):632-642. |
[39] | LIANG S, QU S, ZHAO Q T, et al. Quantifying the urban food-energy-water nexus: The case of the Detroit Metropolitan Area. Environmental Science & Technology, 2018,53(2):779-788. |
[40] | VORA N, SHAH A, BILEC M M, et al. Food-energy-water nexus: Quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustainable Chemistry & Engineering, 2017,5(3):2119-2128. |
[41] | VANDONE D, PERI M, BALDI L, et al. The impact of energy and agriculture prices on the stock performance of the water industry. Water Resources and Economics, 2018,23(3):14-27. |
[42] | HONG S Y, YANG H, WANG H R, et al. Water and energy circulation characteristics and their impacts on water stress at the provincial level in China. Stochastic Environmental Research and Risk Assessment, 2019,33(10):1-18. |
[43] | HONG S Y, WANG H R, CHENG T. Circulation characteristic analysis of implied water flow based on a complex network: A case study for Beijing, China. Water, 2018,10(7):834. |
[44] | KHAN H F, YANG Y C, XIE H, et al. A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrology and Earth System Sciences Discussions, 2017,21(12):6275-6288. |
[45] | 王慧敏, 洪俊, 刘钢. “水—能源—粮食”纽带关系下区域绿色发展政策仿真研究. 中国人口·资源与环境, 2019,29(6):74-84. |
[ WANG H M, HONG J, LIU G. Simulation research on different policies of regional green development under the nexus of water-energy-food. China Population, Resources and Environment, 2019,29(6):74-84.] | |
[46] | 米红, 周伟. 未来30年我国粮食、淡水、能源需求的系统仿真. 人口与经济, 2010, ( 1):1-7. |
[ MI H, ZHOU W. The system simulation of China's grain, fresh water and energy demand in the next 30 years. Population & Economics, 2010, ( 1):1-7.] | |
[47] | HUSSIEN W A, MEMON F A, SAVIC D A. An integrated model to evaluate water-energy-food nexus at a household scale. Environmental Modelling & Software, 2017,93(7):366-380. |
[48] | AMJATH-BABU T S, SHARMA B, BROUWER R, et al. Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan River Basin. Applied Energy, 2019,239(6):494-503. |
[49] | YANG Y, RINGLER C, BROWN C, et al. Modeling the agricultural water-energy-food nexus in the Indus River Basin, Pakistan. Journal of Water Resources Planning and Management, 2016,142(12):4016062, Doi: 10.1061/(ASCE)WR.1943-5452.0000710. |
[50] | MOMBLANCH A, PAPADIMITRIOU L, JAIN S K, et al. Untangling the water-food-energy-environment nexus for global change adaptation in a complex Himalayan water resource system. Science of the Total Environment, 2019,655(10):35-47. |
[51] | WALKER R V, BECK M B, HALL J W, et al. The energy-water-food nexus: Strategic analysis of technologies for transforming the urban metabolism. Journal of Environmental Management, 2014,141(10):104-115. |
[52] | 彭少明, 郑小康, 王煜, 等. 黄河流域水资源—能源—粮食的协同优化. 水科学进展, 2017,28(5):681-690. |
[ PENG S M, ZHENG X K, WANG Y, et al. Study on water-energy-food collaborative optimization for Yellow River Basin. Advances in Water Science, 2017,28(5):681-690.] | |
[53] | HURFORD A P, HAROU J J. Balancing ecosystem services with energy and food security-assessing trade-offs for reservoir operation and irrigation investment in Kenya's Tana Basin. Hydrology and Earth System Sciences, 2014,11(1):1343-1388. |
[54] | RINGLER C, WILLENBOCKEL D, PEREZ N, et al. Global linkages among energy, food and water: An economic assessment. Journal of Environmental Studies and Sciences, 2016,6(1):161-171. |
[55] | HOWELLS M, HERMANN S, WELSCH M, et al. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change, 2013,3(7):621-626. |
[56] | DAHER B T, MOHTAR R H. Water-energy-food (WEF) nexus tool 2.0: Guiding integrative resource planning and decision-making. Water International, 2015,40(5-6):748-771. |
[57] | WICAKSONO A, KANG D. Nationwide simulation of water, energy, and food nexus: Case study in South Korea and Indonesia. Journal of Hydro-environment Research, 2019,22(1):70-87. |
[58] | KARNIB A. Bridging science and policy in water-energy-food nexus: Using the Q-Nexus model for informing policy making. Water Resources Management, 2018,32(15):4895-4909. |
[59] | GIAMPIETRO M, ASPINALL R, BUKKENS S, et al. An innovative accounting framework for the food-energy-water nexus: Application of the MuSIASEM approach to three case studies. Roma: FAO, 2013: 3-21. |
[60] | MARTINEZ-HERNANDEZ E, LEACH M, YANG A. Understanding water-energy-food and ecosystem interactions using the nexus simulation tool NexSym. Applied Energy, 2017,206(22):1009-1021. |
[61] | KRAUCUNAS I, CLARKE L, DIRKS J, et al. Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA). Climatic Change, 2015,129(3-4):573-588. |
[62] | ZHANG X, VESSELINOV V V. Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources, 2017,101(3):1-10. |
[63] | KLING C L, ARRITT R W, CALHOUN G, et al. Integrated assessment models of the food, energy, and water nexus: A Review and an outline of research needs. Social Science Electronic Publishing, 2017,9(8):143-163. |
[64] | 沈镭, 钟帅, 胡纾寒. 新时代中国自然资源研究的机遇与挑战. 自然资源学报, 2020,35(8):1773-1788. |
[ SHEN L, ZHONG S, HU S H. Opportunities and challenges of natural resources research of China in the New Era. Journal of Natural Resources, 2020,35(8):1773-1788.] | |
[65] | 张力小, 张鹏鹏, 郝岩, 等. 城市食物—能源—水关联关系: 概念框架与研究展望. 生态学报, 2019,39(4):1144-1153. |
[ ZHANG L X, ZHANG P P, HAO Y, et al. Urban food-energy-water (FEW) nexus: Conceptual frameworks and prospects. Acta Ecologica Sinica, 2019,39(4):1144-1153.] | |
[66] | 网大为. 重构地球: AI FOR FEW. 北京: 中国人民出版社, 2021: 40-53. |
[ DAVID W. Reconstructing the Earth: AI FOR FEW. Beijing: Chinese People's Publishing House, 2021: 40-53.] |
[1] | 王旭, 马伯文, 李丹, 陈昆仑, 姚华松. 基于FLUS模型的湖北省生态空间多情景模拟预测[J]. 自然资源学报, 2020, 35(1): 230-242. |
[2] | 董川永, 高俊峰. 太湖流域西部圩区陆地生态系统维持和调节功能量化评估[J]. 自然资源学报, 2014, 29(3): 420-430. |
[3] | 赵建军, 张洪岩, 乔志和, 张正祥, 侯光雷. 基于CA-Markov模型的向海湿地土地覆被变化动态模拟研究[J]. 自然资源学报, 2009, 24(12): 2178-2186. |
|