自然资源学报 ›› 2020, Vol. 35 ›› Issue (5): 1238-1249.doi: 10.31497/zrzyxb.20200518
谢蓉蓉1,2, 吴如林1, 唐晨1, 赖月婷1, 龚开晟1, 李家兵1,2
收稿日期:
2019-04-11
出版日期:
2020-05-28
发布日期:
2020-05-28
通讯作者:
李家兵(1974- ),男,安徽六安人,博士,副教授,研究方向为近海岸环境生物地球化学循环、湿地生态恢复与管理及环境影响评价与管理。E-mail: lijiabing@fjnu.edu.cn
作者简介:
谢蓉蓉(1987- ),女,江苏张家港人,博士,副教授,研究方向为流域河口污染物循环与环境水文过程、环境管理及环境数学模型。E-mail: xierr1118@163.com
基金资助:
XIE Rong-rong1,2, WU Ru-lin1, TANG Chen1, LAI Yue-ting1, GONG Kai-sheng1, LI Jia-bing1,2
Received:
2019-04-11
Online:
2020-05-28
Published:
2020-05-28
摘要: 为了探究互花米草(Spartina alterniflora)入侵对湿地沉积物重金属累积的效应,选择典型亚热带河口湿地(闽江鳝鱼滩湿地)中未被入侵的短叶茳芏(Cyperus malaccensis)群落A、互花米草入侵斑块边缘B以及互花米草入侵斑块中央C三个典型区10个不同深度的Co、Ni、Cu、As进行研究,并采用地累积指数法及潜在生态风险评价法进行评价。结果表明:(1) 三个采样点Co、Ni、Cu、As含量均随着互花米草入侵过程显著增加,即C>B>A,相比入侵前增量分别达到26.31%、19.66%、50.79%和16.93%;(2)地累积指数法显示,研究区域Co、Ni、Cu为轻度污染状态,As则处在强污染向极强污染过渡状态;(3)潜在生态风险评价法显示,研究区域Co、Ni、Cu的潜在生态风险轻微,As在A、B两点的潜在生态风险因子很强,C点为极强。两种评价方法均显示互花米草的入侵将一定程度上加剧重金属污染及其潜在的生态风险,区域内As污染需引起重视。进一步分析表明沉积物Co、Ni、Cu、As与总碳、总氮、碳氮比、容重和地上生物量呈显著相关,互花米草对湿地沉积物重金属累积的机制可能与其发达的地上生物量与地下密集的根系结构有关。
谢蓉蓉, 吴如林, 唐晨, 赖月婷, 龚开晟, 李家兵. 互花米草入侵对河口湿地沉积物重金属累积效应[J]. 自然资源学报, 2020, 35(5): 1238-1249.
XIE Rong-rong, WU Ru-lin, TANG Chen, LAI Yue-ting, GONG Kai-sheng, LI Jia-bing. Heavy metal accumulation affected by Spartina alterniflora invasion in estuarine wetland sediments[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(5): 1238-1249.
[1] HUGHES C E, BINNING P, WILLGOOSE G R.Characterisation of the hydrology of an estuarine wetland. Journal of Hydrology, 1998, 211(1-4): 34-49. [2] DONG Y, ROSENBAUMR K, HAUSCHILDM Z.Metal toxicity characterization factors for marine ecosystems: Considering the importance of the estuary for freshwater emissions. The International Journal of Life Cycle Assessment, 2018, 23(8): 1641-1653. [3] MUSTAPHA H I, BRUGGEN J J A V, LENS P N L. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria. International Journal of Phytoremediation, 2017, 20(1): 44-53. [4] 邵思婷, 邓红梅, 宋永欣, 等. 湿地沉积物对铊、镉的吸附性能. 环境化学, 2018, 37(7): 94-104. [SHAO S T, DENG H M, SONG Y X, et al.Adsorption of thallium and cadmium by wetland sediments. Environmental Chemistry, 2018, 37(7): 94-104.] [5] ZHANG M, CUI L, SHENG L, et al.Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological Engineering, 2009, 35(4): 563-569. [6] KUMAR M, GUPTA N, RATN A, et al.Biomonitoring of heavy metals in River Ganga water, sediments, plant, and fishes of different trophic levels. Biological Trace Element Research, 2020, 193: 536-547. [7] ZUO P, ZHAO S, LIU C, et al.Distribution of [8] ALBERTS J J, PRICE M T, KANIA M.Metal concentrations in tissues of [9] 王维奇, 徐玲琳, 曾从盛, 等. 闽江河口湿地互花米草入侵机制. 自然资源学报, 2011, 26(11): 1900-1907. [WANG W Q, XU L L, ZENG C S, et al.Invasion mechanism of [10] 金宝石, 高灯州, 杨平, 等. 闽江河口区互花米草入侵不同年限下湿地土壤有机碳变化. 自然资源学报, 2016, 31(4): 608-619. [JIN B S, GAO D Z, YANG P, et al.Changes of soil organic carbon with different years of [11] 陈权, 马克明. 互花米草入侵对红树林湿地沉积物重金属累积的效应与潜在机制. 植物生态学报, 2017, 41(4): 26-34. [CHEN Q, MA K M.Effects of [12] LI J, LAI Y, XIE R, et al.Sediment phosphorus speciation and retention process affected by invasion time of [13] XIE R, ZHU Y, LI J, et al.Changes in sediment nutrients following [14] 杨丹, 谢宗强, 樊大勇, 等. 三峡水库蓄水对消落带土壤Cu、Zn、Cr、Cd含量的影响. 自然资源学报, 2018, 33(7): 1283-1290. [YANG D, XIE Z Q, FAN D Y, et al.The effect of water fluctuation on the contents of soil Cu, Zn, Cr and Cd at the riparian area of Three Gorges Reservoir. Journal of Natural Resources, 2018, 33(7): 1283-1290.] [15] HAKANSON L.An ecological risk index for aquatic pollution control: A sediment ecological approach. Water Research, 1980, 14(8): 975-1001. [16] 刘用清. 福建省海岸带土壤环境背景值研究及其应用. 海洋环境科学, 1995, 14(2): 68-73. [LIU Y Q.Study and application of the soil environmental background values in Fujian coastal zone. Marine Environmental Science, 1995, 14(2): 68-73.] [17] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算. 环境科学与技术, 2008, 31(2): 112-115. [XU Z Q, NI S J, TUO X G, et al.Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science & Technology, 2008, 31(2): 112-115.] [18] 车继鲁, 余树全, 张鑫, 等. 瓯江下游流域河流沉积物重金属污染特征、来源及潜在生态风险评价. 生态科学, 2017, 36(4): 176-184. [CHE J L, YU S Q, ZHANG X, et al.Pollution characteristics, sources and potential ecological risk of heavy metals in surface sediment from the lower Ou River. Ecological Science, 2017, 36(4): 176-184.] [19] 林祥. 闽江污染物入海总量变化趋势研究. 环境保护科学, 2018, 44(5): 101-105, 117. [LI X.Study of the change trend of the total pollutants of Minjiang River into the sea. Environmental Protection Science, 2018, 44(5): 101-105, 117.] [20] MUDD S M, D'ALPAOS A, MORRIS J T. How does vegetation affect sedimentation on tidal marshes?: Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research Earth Surface, 2010, 115: F03029. https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2009JF001566. [21] 徐艳. 互花米草和芦苇生长及枯落物分解过程中重金属的累积迁移特征. 上海: 华东师范大学, 2018. [XU Y.Accumulation and transportation of heavy metals during the growth and decomposition of [22] 陈浩, 吉力力·阿不都外力, 刘文, 等. 博尔塔拉河沿岸土壤重金属含量特征与有机质、pH值的关系. 水土保持研究, 2016, 23(5): 210-213. [CHEN H, JILILI A, LIU W, et al.Correlation between heavy metals organic matter, pH value in the soils along the Bortala River. Research of Soil and Water Conservation, 2016, 23(5): 210-213.] [23] 陈莲, 高建华, 冯振兴, 等. 重金属在互花米草盐沼湿地中的富集及迁移规律. 南京大学学报: 自然科学版, 2014, (5): 695-705. [CHEN L, GAO J H, FENG Z X, et al.The regular pattern of enrichment and migration of heavy metals in [24] 张龙辉, 杜永芬, 王丹丹, 等. 江苏如东互花米草盐沼湿地重金属分布及其污染评价. 环境科学, 2014, 35(6): 2401-2410. [ZHANG L H, DU Y F, WANG D D, et al.Distribution patterns and pollution assessments of heavy metals in the [25] 王启栋, 宋金明, 李学刚, 等. 黄河口新生湿地沉积物中的金属元素及其环境指示意义. 海洋科学集刊, 2016, (1): 233-244. [WANG Q D, SONG J M, LI X G, et al.Metal elements in the sediment of the newly created wetlands of Yellow River Estuary and their environmental significances. Studia Marina Sinica, 2016, (1): 233-244.] [26] 张明, 鲍征宇, 陈国光, 等. 华东沿海滩涂区表层沉积物重金属含量特征及风险评价. 环境科学, 2017, 38(11): 4513-4524. [ZHANG M, BAO Z Y, CHEN G G, et al.Characteristics and risks of heavy metals content in surface sediment of tidal flat areas in Eastern China. Environmental Science, 2017, 38(11): 4513-4524.] [27] 李卫平, 王非, 杨文焕, 等. 包头市南海湿地土壤重金属污染评价及来源解析. 生态环境学报, 2017, 26(11): 1977-1984. [LI W P, WANG F, YANG W H, et al.Pollution assessment and source apportionment of heavy metals in Nanhai wetland soil of Baotou city. Ecology and Environmental Sciences, 2017, 26(11): 1977-1984.] [28] 刘泽正, 汪方芳, 解成杰, 等. 辽河口盐沼湿地表层沉积物重金属污染评价. 北京师范大学学报: 自然科学版, 2018, 54(1): 144-149. [LIU Z Z, WANG F F, XIE C J, et al.Assessing heavy metal pollution in surface sediments of saltmarshes in Liaohe Estuary. Journal of Beijing Normal University: Natural Science, 2018, 54(1): 144-149.] [29] WANG Z, HOU L, LIU Y, et al.Metal contamination in a riparian wetland: Distribution, fractionation and plant uptake. Chemosphere, 2018, 200: 587-593. [30] NATH B, CHAUDHURI P, BIRCH G.Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia. Ecotoxicology and Environmental Safety, 2014, 107: 284-290. [31] THINH N V, AKINORI O, HOANG N T, et al.Arsenic and heavy metal contamination in soils under different land use in an estuary in Northern Vietnam. International Journal of Environmental Research and Public Health, 2016, 13(11): 1091. [32] SIMONETTI P, BOTTÉ S E, MARCOVECCHIO J E.Occurrence and spatial distribution of metals in intertidal sediments of a temperate estuarine system (Bahía Blanca, Argentina). Environmental Earth Sciences, 2017, 76: 636. [33] RAMACHANDRA T V, SUDARSHAN P B, MAHESH M K, et al.Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. Journal of Environmental Management, 2018, 206: 1204-1210. [34] GHOSH S, BAKSHI M, KUMAR A, et al.Assessing the potential ecological risk of Co, Cr, Cu, Fe and Zn in the sediments of Hooghly-Matla estuarine system, India. Environmental Geochemistry and Health, 2019, 41(1): 53-70. [35] 李洋, 陈卫锋, 魏然, 等. 闽江福州段沉积物中重金属的分布特征及其毒性和生态风险评价. 环境科学学报, 2016, 36(5): 1792-1799. [LI Y, CHEN W F, WEI R, et al.Distribution characteristics, toxicity and risk assessment of heavy metals in sediments of Minjiang River in Fuzhou city. Acta Scientiae Circumstantiae, 2016, 36(5): 1792-1799.] [36] SIMBERLOFF D, MARTIN J L, GENOVESI P, et al.Impacts of biological invasions: What's what and the way forward. Trends in Ecology & Evolution, 2013, 28(1): 58-66. [37] NEGRINV L, BOTTÉS E, COLLAN S, et al. Uptake and accumulation of metals in |
[1] | 胡其玉, 陈松林. 基于生态系统服务供需的厦漳泉地区生态网络空间优化[J]. 自然资源学报, 2021, 36(2): 342-355. |
[2] | 卢明强, 陈丽军. 基于MNL离散选择模型的社区居民对湿地保护的贡献意愿——以大庆湿地为例[J]. 自然资源学报, 2021, 36(2): 449-458. |
[3] | 贾建辉, 陈建耀, 龙晓君, 陈记臣. 水电开发对河流生态系统服务的效应评估与时空变化特征分析——以武江干流为例[J]. 自然资源学报, 2020, 35(9): 2163-2176. |
[4] | 杜腾飞, 齐伟, 朱西存, 王鑫, 张瑜, 张蕾. 基于生态安全格局的山地丘陵区自然资源空间精准识别与管制方法[J]. 自然资源学报, 2020, 35(5): 1190-1200. |
[5] | 邱冬冬, 闫家国, 张树岩, 左佃龙, 刘泽正, 汪方芳, 王青, 崔保山. 滨海湿地退化区鸟类刨坑觅食行为促进植被的恢复[J]. 自然资源学报, 2020, 35(2): 449-459. |
[6] | 李冬雪, 李雨芩, 张珂豪, 马旭, 张树岩, 刘伟华, 车纯广, 崔保山. 黄河口典型潮沟土壤碳氮分布特征规律[J]. 自然资源学报, 2020, 35(2): 460-471. |
[7] | 关亚楠, 白军红, 王伟, 王大伟, 尹硕. 黄河三角洲不同淹水条件下芦苇和盐地碱蓬凋落物的分解与重金属归还特征[J]. 自然资源学报, 2020, 35(2): 472-479. |
[8] | 潘美慧, 杨安娜, 伍永秋, 马建军, 薛雯轩. 雅江河谷佛掌沙丘表层沉积物粒度特征[J]. 自然资源学报, 2020, 35(12): 3076-3088. |
[9] | 荔琢, 蒋卫国, 王文杰, 吕金霞, 邓越. 基于生态系统服务价值的京津冀城市群湿地主导服务功能研究[J]. 自然资源学报, 2019, 34(8): 1654-1665. |
[10] | 彭凯锋, 蒋卫国, 邓越. 武汉城市圈湿地受损程度识别及驱动因素分析[J]. 自然资源学报, 2019, 34(8): 1694-1707. |
[11] | 王赛男, 李建鸿, 蒲俊兵, 霍伟杰, 张陶, 黄思宇, 袁道先. 气候和人类活动对典型岩溶地下河系统径流年际变化的影响[J]. 自然资源学报, 2019, 34(4): 759-770. |
[12] | 黄木易, 岳文泽, 冯少茹, 蔡接接. 基于MCR模型的大别山核心区生态安全格局异质性及优化[J]. 自然资源学报, 2019, 34(4): 771-784. |
[13] | 朱浩楠, 刘晓冉, 孙佳, 王颖, 廖代强, 周杰. 湿地公园对局地气候舒适性影响的数值试验[J]. 自然资源学报, 2019, 34(2): 412-423. |
[14] | 杨薇, 靳宇弯, 孙立鑫, 孙涛, 邵冬冬. 基于生产可能性边界的黄河三角洲湿地生态系统服务权衡强度[J]. 自然资源学报, 2019, 34(12): 2516-2528. |
[15] | 张倩, 刘冰洁, 余璐, 王瑞瑞, 郑浩, 罗先香, 李锋民. 生物炭对滨海湿地盐碱土壤碳氮循环的影响[J]. 自然资源学报, 2019, 34(12): 2529-2543. |
|