自然资源学报 ›› 2018, Vol. 33 ›› Issue (8): 1451-1462.doi: 10.31497/zrzyxb.20170708
所属专题: 气候变化与地表过程
张虹1,2,3, 张代钧1,*, 卢培利1, 宋福忠1, 寇双伍1
收稿日期:
2017-07-31
修回日期:
2017-12-12
出版日期:
2018-08-20
发布日期:
2018-08-20
通讯作者:
张代钧(1963- ),男,重庆人,教授,博士生导师,研究方向为环境科学与工程。E-mail: 作者简介:
张虹(1978- ),女,内蒙古呼和浩特人,副教授,研究方向为资源开发与生态环境保护。E-mail: zh_angh@cqnu.edu.cn
基金资助:
ZHANG Hong1,2,3, ZHANG Dai-jun1, LU Pei-li1, SONG Fu-zhong1, KOU Shuang-wu1
Received:
2017-07-31
Revised:
2017-12-12
Online:
2018-08-20
Published:
2018-08-20
Supported by:
摘要: 页岩气开采消耗大量水和产生组成复杂的高盐返排-产出水,对开采区水资源的安全构成很大风险。论文识别了决定山区页岩气开采的水资源可利用性和返排-产出水对地表水环境胁迫的关键因素,构建了流域地表水资源安全评价方法,以亚流域为单元,完成了2010—2020年重庆地区页岩气开采前后、不同开采强度下地表水资源安全的评价。2010—2020年重庆市页岩气开采的取水对区域水资源的总体压力小,对渝西局部缺水地区的短时影响较大;页岩气开采的返排-产出水对重庆中西部都市区及周边的污染负荷高值区,东北部秦巴山城口、巫溪水环境高敏感区的潜在污染风险大;重庆市页岩气开采的水资源安全水平以好、中等为主,占重庆总面积的2/3,其总体格局呈渝东南>渝东北>渝西。随着经济、社会发展及页岩气的规模化开采,局部水资源安全等级有下降的风险,研究成果可为区域页岩气开采水资源配置和水环境保护提供决策支持。
中图分类号:
张虹, 张代钧, 卢培利, 宋福忠, 寇双伍. 重庆市页岩气开采流域地表水资源安全的综合评价[J]. 自然资源学报, 2018, 33(8): 1451-1462.
ZHANG Hong, ZHANG Dai-jun, LU Pei-li, SONG Fu-zhong, KOU Shuang-wu. Comprehensive Assessment of Surface Water Resource Security in Basin with Shale Gas Extraction in Chongqing, China[J]. JOURNAL OF NATURAL RESOURCES, 2018, 33(8): 1451-1462.
[1] Energy Information Administration, USA. Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States [EB/OL]. http://www.eia.gov/analysis/studies/world shale gas/. 2013. [2] 董大忠, 邹才能, 李建忠, 等. 页岩气资源潜力与勘探开发前景[J]. 地质通报, 2011, 31(2): 324-336. [DONG D Z, ZOU C N, LI J Z, et al.Resource potential, exploration and development prospect of shale gas in the whole world. Geological Bulletin of China, 2011, 30(2): 324-336. ] [3] YU M J, WEINTHAL E, PATIÑO-ECHEVERRI D, et al. Water availability for shale gas development in sichuan basin, China[J]. Environmental Science & Technology, 2016, 50: 2837-2845. [4] VENGOSH A, JACKSON R B, WARNER N, et al.A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48: 8334-8348. [5] ROZELL D J, REAVEN S J.Risk to water pollution associated with natural gas extraction from the Marcellus Shale[J]. Risk Analysis, 2011, 10: 1539-1548. [6] 彭建, 赵会娟, 刘焱序, 等. 区域水安全格局构建: 研究进展及概念框架[J]. 生态学报, 2016, 36(11): 3137-3145. [PENG J, ZHAO H J, LIU Y X, et al.Progress and conceptual framework of regional water security pattern construction. Acta Ecologica Sinica, 2016, 36(11): 3137-3145. ] [7] 任怡, 王义民, 畅建霞, 等. 陕西省水资源供求指数和综合干旱指数及其时空分布[J]. 自然资源学报, 2017, 32(1): 137-151. [REN Y, WANG Y M, CHANG J X, et al.The spatial and temporal distribution of drought in Shaanxi Province. Journal of Natural Resources, 2017, 32(1): 137-151. ] [8] 周亮, 徐建刚, 蔡北溟, 等. 淮河流域粮食生产与化肥消费时空变化及对水环境影响[J]. 自然资源学报, 2014, 29(6): 1054-1062. [ZHOU L, XU J G, CAI B M, et al.The spatio-temporal changes of grain production and fertilizer consumption and its impact on water environment in the Huaihe River Basin. Journal of Natural Resources, 2014, 29(6): 1054-1062. ] [9] 张永勇, 花瑞祥, 夏瑞, 等. 气候变化对淮河流域水量水质影响分析[J]. 自然资源学报, 2017, 32(1): 114-126. [ZHANG Y Y, HUA R X, XIA R, et al.Impact analysis of climate change on water quantity and quality in the Huaihe River Basin. Journal of Natural Resources, 2017, 32(1): 114-126. ] [10] 金菊良, 吴开亚, 魏一鸣. 基于联系数的流域水安全评价模型[J]. 水利学报, 2008, 39(4): 401-409. [JIN J L, WU K Y, WEI Y M.Connection number based assessment model for watershed water security. Journal of Hydraulic Engineering, 2008, 39(4): 401-409. ] [11] 江红, 杨小柳. 基于熵权的亚太地区水安全评价[J]. 地理科学进展, 2015, 34(3): 373-380. [JIANG H, YANG X L.Entropy weight-based water security assessment in Asia-Pacific. Progress in Geography, 2015, 34(3): 373-380. ] [12] 张翔, 夏军, 贾绍凤. 水安全定义及其评价指数的应用[J]. 资源科学, 2005, 27(3): 144-149. [ZHANG X, XIA J, JIA S F.Definition of water security and its assessment using water poverty index. Resources Science, 2005, 27(3): 144-149. ] [13] NICOT J P, SCANLON B R.Water use for shale-gas production in texas, US[J]. Environmental Science & Technology, 2012, 46(6): 3580-3586. [14] VANDECASTEELE I, RIVERO I M, SALA S, et al.Impact of shale gas development on water resources: A case study in northern Poland[J]. Environmental Management, 2015, 55(6): 1285-1290. [15] VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al.Impact of shale gas development on regional water quality[J]. Science, 2013, 340: 286-297. [16] OLMSTEAD S M, MUEHLENBACHS L A, SHIH J, et al.Shale gas development impacts on surface water quality in Pennsylvania[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13): 4962-4967. [17] WARNER N R, CHRISTIE C A, JACKSON R B, et al.Impacts of shale gas wastewater disposal on water quality in western Pennsylvania[J]. Environmental Science & Technology, 2013, 47(20): 11849-11857. [18] SCANLON B R, REEDY R C, MALE F, et al.Managing the increasing water footprint of hydraulic fracturing in the Bakken Play, United States[J]. Environmental Science & Technology, 2016, 50(18): 10273-10281. [19] RAHM B G, RIHA S J.Evolving shale gas management: Water resource risks, impacts, and lessons learned[J]. Environmental Science Processes & Impacts, 2014, 16: 1400-1412. [20] RAHM B G, RIHA S J.Toward strategic management of shale gas development: Regional, collective impacts on water resources[J]. Environmental Science & Policy, 2012, 17: 12-23. [21] SCANLON B R, REEDY R C, MALE F, et al.Managing the increasing water footprint of hydraulic fracturing in the Bakken Play, United States[J]. Environmental Science & Technology, 2016, 50(18): 10273-10281. [22] GORDALLA B C, EWERS U, FRIMMEL F H.Hydraulic fracturing: A toxicological threat for groundwater and drinking-water?[J]. Environmental Earth Sciences, 2013, 70(8): 3875-3893. [23] MYERS T.Potential contaminant pathways from hydraulically fractured shale to aquifers[J]. Groundwater, 2012, 50(6): 872-882. [24] KUWAYAMA Y, OLMSTEAD S, KRUPNICK A.Water quality and quantity impacts of hydraulic fracturing[J]. Current Sustainable/Renewable Energy Reports, 2015, 2(1): 17-24. [25] 郭永德, 高金环, 马洪兵. Suomi-NPP夜间灯光数据与GDP的空间关系分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 100-108. [GUO Y D, GAO J H, MA H B.Spatial correlation analysis of Suomi-NPP nighttime light data and GDP data. Journal of Tsinghua University (Science and Technology), 2016, 56(10): 100-108. ] [26] 黄杰, 闫庆武, 刘永伟. 基于DMSP/OLS与土地利用的江苏省人口数据空间化研究[J]. 长江流域资源与环境, 2015, 24(5): 735-741. [HUANG J, YAN Q W, LIU Y W.Modeling the population density of Jiangsu Province based on DMSP/OLS satellite imagery and land use data. Resources and Environment in the Yangtze Basin, 2015, 24(5): 735-741. ] [27] 段秀举. 基于生态理念的山地城市水资源规划研究 [D]. 重庆: 重庆大学, 2015: 130-133. [DUAN X J.Research on Water Resources Planning of Mountainous City Based on Ecological Conception—A Case Study of Chongqing. Chongqing: Chongqing University, 2015: 130-133. ] [28] 刘晓冉, 杨茜, 程炳岩, 等. 近46年重庆地区降水资源的变化特征分析[J]. 西南大学学报(自然科学版), 2010(7): 93-100. [LIU X R, YANG Q, CHENG B Y, et al. Characteristics of change in precipitation resources in Chongqing during 1961-2006. Journal of Southwest University (Natural Science Edition), 2010(7): 93-100. ] [29] YU G M, CHEN X X, TU Z F, et al.Modeling water accessibility of natural river networks using the fine-grained physical watershed characteristics at the grid scale[J]. Water Resources Management, 2017, 31(7): 2271-2284. [30] 吕乐婷, 彭秋志, 郭媛媛, 等. 基于SWAT模型的东江流域径流模拟[J]. 自然资源学报, 2014, 29(10): 1747-1759. [LÜ L T, PENG Q Z, GUO Y Y, et al.Runoff simulation of Dongjiang River Basin based on the soil and water assessment tool. Journal of Natural Resources, 2014, 29(10): 1747-1759. ] [31] 马雪莹, 邵景安, 徐新良. 基于熵权-TOPSIS 的山区乡镇通达性研究: 以重庆市石柱县为例[J]. 地理科学进展, 2016, 35(9): 1144-1154. [MA X Y, SHAO J A, XU X L.Rural transportation accessibility in mountainous areas based on the entropy-weight TOPSIS method: A case study of Shizhu County, Chongqing Municipality. Progress in Geography, 2016, 35(9): 1144-1154. ] [32] 刘春霞, 李月臣, 杨华, 等. 三峡库区重庆段生态与环境敏感性综合评价[J]. 地理学报, 2011, 66(5): 631-642. [LIU C X, LI Y C, YANG H, et al.RS and GIS-based assessment for eco-environmental sensitivity of the Three Gorges Reservoir area of Chongqing. Acta Geographica Sinica, 2011, 66(5): 631-642. ] [33] 孙红福, 赵峰华, 张璐, 等. 重庆西部干旱区煤矿矿井水水质综合评价[J]. 煤炭学报, 2014, 39(4): 736-743. [SUN H F, ZHAO F H, ZHANG L, et al.Comprehensive assessment of coal mine drainage quality in the arid area of western Chongqing. Journal of China Coal Society, 2014, 39(4): 736-743. ] [34] HE C, ZHANG T, VIDIC R D.Co-treatment of abandoned mine drainage and marcellus shale flowback water for use in hydraulic fracturing[J]. Water Research, 2016, 104: 425-431. [35] 张虹, 张代钧, 卢培利. 重庆市页岩气开采的浅层地下水污染风险评价[J]. 环境工程学报, 2017, 11(4): 2016-2024. [ZHANG H, ZHANG D J, LU P L.Primary assessment of shallow ground water pollution risk for shale gas exploitation in Chongqing. Chinese Journal of Environmental Engineering, 2017, 11(4): 2016-2024. ] |
[1] | 邵志江, 郑斌, 汪涛. 永定河上游主要河流地表水水质时空变化特征[J]. 自然资源学报, 2020, 35(6): 1338-1347. |
[2] | 雷义珍, 曹生奎, 曹广超, 杨羽帆, 兰垚, 季雨桐, 李华非. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538. |
[3] | 袁瑞强, 张文新, 王鹏, 王仕琴. 引黄调水对汾河受水区水环境的影响[J]. 自然资源学报, 2018, 33(8): 1416-1426. |
[4] | 汪雁佳, 李景保. 三峡水库运行后荆南三口地区水资源安全状态及归因分析[J]. 自然资源学报, 2018, 33(11): 1992-2005. |
[5] | 宋培争, 汪嘉杨, 刘伟, 余静, 张碧. 基于PSO优化逻辑斯蒂曲线的水资源安全评价模型[J]. 自然资源学报, 2016, 31(5): 886-893. |
[6] | 王丹阳, 李景保, 叶亚亚, 谭芬芳. 一种改进的灰水足迹计算方法[J]. 自然资源学报, 2015, 30(12): 2120-2130. |
[7] | 刘斌涛, 陶和平, 孔博, 何兵. 云南省水资源时空分布格局及综合评价[J]. 自然资源学报, 2014, 29(3): 454-465. |
[8] | 王菊翠, 仵彦卿, 党碧玲, 徐增让, 胡安焱, 张学真. 基于统计分析的陕西段泾河水质时空分布特征[J]. 自然资源学报, 2012, 27(4): 674-685. |
[9] | 高媛媛, 王红瑞, 许新宜, 高雄, 史秋阳. 水资源安全评价模型构建与应用——以福建省泉州市为例[J]. 自然资源学报, 2012, 27(2): 204-214. |
[10] | 刘俊, 周祖昊, 鲁欣, 王秋岭, 王金成, 李志祥, 秦大庸. 现状条件下唐山市地表水资源量探讨[J]. 自然资源学报, 2006, 21(4): 545-550. |
[11] | 张士锋, 贾绍凤. 海河流域水量平衡与水资源安全问题研究[J]. 自然资源学报, 2003, 18(6): 684-691. |
[12] | 赵同谦, 欧阳志云, 王效科, 苗鸿, 魏彦昌. 中国陆地地表水生态系统服务功能及其生态经济价值评价[J]. 自然资源学报, 2003, 18(4): 443-452. |
[13] | 耿雷华, 陈晓燕, 贾健, 钟华平, 沈福新. 西北地区水资源数量、质量及其分布规律[J]. 自然资源学报, 2003, 18(3): 267-273. |
[14] | 袁玉江, 桑修诚, 吴素芬. 北疆250年地表水资源变化特征及未来趋势预测[J]. 自然资源学报, 1996, 11(2): 113-119. |
[15] | 李江风, 袁玉江, 马慧明, 赵泽珍, 王姣艳. 伊犁地区历史径流深度场的重建[J]. 自然资源学报, 1994, 9(1): 67-76. |
|