近地表气温直减率是研究山地生态系统对气候变化响应过程中的重要参数,论文基于青藏高原西北部1951—2013年的9个标准气象站以及2012—2016年的高山自设观测站的日平均气温、最低气温、最高气温(Tave、Tmin、Tmax)数据,分析了青藏高原西北部近地表气温直减率(LRTave、LRTmin、LRTmax)的时空分布特征。结果表明:1)青藏高原西北部近地表气温随高程增大有显著下降趋势。研究区两个区域的LRTave、LRTmin、LRTmax均呈现出显著的空间差异性,而基于气象站的LRTave、LRTmin高于高山观测站的LRTave、LRTmin、LRTmax,其中LRTmin差异最为显著,而LRTmax空间差异较小。2)青藏高原西北部近地表气温直减率具有明显的季节差异,气象站的LRTave、LRTmin、LRTmax季节变化趋势为春季高、夏季较高、冬季低,而高山观测站的LRTave、LRTmin、LRTmax季节变化趋势为夏季高、冬季低。其中气象站LRTmax在四季中的差异最显著,而高山观测站的LRTmin的季节差异最大。高山观测站的气温直减率在4—9月间具有较为稳定的值。3)青藏高原西北部LRTave、LRTmin在气温突变年前后具有显著的差异,LRTmax无显著的变化。其中,在气温突变年之后,LRTave、LRTmin有显著的上升趋势,表明青藏高原西北部地区的LRTave、LRTmin对区域气候变化的响应显著,而LRTmax对区域气候变化的响应不显著。研究将有效改善青藏高原西北部气温空间分布规律研究的不足,为区域气候变化研究及生态系统对气候响应等定量研究提供理论基础。
Abstract
The lapse rate of near surface air temperature is an important parameter in hydrologic and climatic simulations, especially in the high mountainous areas without enough observations. Based on the long-term meteorological measurement data (1951-2013) and near surface air temperature (Tmin, Tave, and Tmax) measured by self-established weather stations during 2012-2016, this study evaluates the spatial and temporal variations of near surface temperature lapse rate (βlocal) over the northwestern Tibetan Plateau. The results show that: 1) The near surface air temperature lapse rate has a spatiotemporal distribution pattern over the northwestern Tibetan Plateau and the constant environmental temperature lapse rate (0.65 ℃/100 m) throughout the year cannot represent the variability of the temperature-elevation relationship in complex terrain areas. The temperature has a significant downward trend as the elevation increases. LRTave, LRTmin, LRTmax in two regions showed different spatial variations. The LRTave, LRTmin, LRTmax at the meteorological stations are higher than the LRTave, LRTmin, LRTmax at the mountain observation stations. The LRTmin shows significant spatial variation, while the LRTmax has smaller spatial variation. 2) A significant seasonal variation can be observed in this region. At the meteorological stations, the trend is that higher values are observed in spring and summer and lower values in winter. As for the mountain observation stations, the LRTave, LRTmin, LRTmax are higher in summer and lower in winter. The LRTmax at the meteorological stations and the LRTmin at the mountain observation stations have significant seasonal variations. 3) The variations of βlocal for Tmax and Tmin in two regions exhibit similar monthly variation characteristics, that βlocal is lower in months of winter and spring and higher in other months. Monthly βlocal for Tmin is higher than Tave and Tmin at the meteorological stations through the whole year. The highest βlocal for Tmax and Tmin occurs in April, while the highest βlocal for Tave occurs in June. At the mountain observation stations, the highest βlocal for Tmax occurs in October, while the highest βlocal for Tave and Tmin occurs in April. 4) A significant increasing trend of βlocal for Tave and Tmin was observed after 1990. The difference of βlocal for Tmin before and after 1990 is more obvious. The differences of Tmax at different elevations before and after 1990 are weak. 5) The spatial and temporal variations of βlocal over the northwestern Tibetan Plateau are linked to geographic differences and climate factors. In addition, the controlling factors for the lapse rate in two regions are different. This research will provide a theoretical basis for quantitative researches of temperature distribution characteristics and mountain ecosystem’s response to climate change in mountain areas.
关键词
近地表气温直减率 /
平均气温 /
青藏高原西北部 /
最低气温 /
最高气温
{{custom_keyword}} /
Key words
average air temperature /
lapse rates of near-surface air temperature /
maximum air temperature /
minimum air temperature /
the northwestern Tibetan Plateau
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DU M X, ZHANG M J, WANG S J, et al.Near-surface air temperature lapse rates in Xinjiang, northwestern China[J]. Theoretical & Applied Climatology, 2018, 131: 1221-1234.
[2] RUNNING S W, NEMANI R, HUNGERFORD R D.βExtrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration[J].βCanadian Journal of Forest Research, 1987, 17(6): 472-483.
[3] RÉGNIÈRE J.βGeneralized approach to landscape-wide seasonal forecasting with temperature-driven simulation models[J]. Environmental Entomology, 1996, 25(5): 869-881.
[4] THORNTON P E, RUNNING S W, WHITE M A.Generating surfaces of daily meteorological variables over large regions of complex terrain[J]. Journal of Hydrology, 1997, 190(3/4): 214-251.
[5] MARSHALL S J, SHARP M J, BURGESS D O, et al. Near-surface-temperature lapse rates on the Prince of Wales Ice field, Ellesmere Island, Canada: Implications for regional down scaling of temperature [J]. International Journal of Climatology, 2007, 27(3):385-398.
[6] GARDNER A S, SHARP M J, KOERNER R M, et al. Near-surface temperature lapse rates over Arctic glaciers and their implications for temperature downscaling [J]. Journal of Climate, 2009,22(16):4281-4298.
[7] MINDER J R, MOTE P, LUNDQUIST J D. Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D14):1307-1314.
[8] PELLICCIOTTI F, PETERSEN L,βCARENZO M.Spatial and temporal variability of air temperature on a melting glacier: Atmospheric controls, extrapolation methods and their effect on melt modelling, Juncal Norte Glacier, Chile [J].Journal of Geophysical Research: Atmospheres,2011, 116(D23), doi: 10.1029/2011JD015842.
[9] JABOT E,ZIN I,LEBEL T, et al.Spatial interpolation of sub-daily air temperatures for snow and hydrologic applications in mesoscale Alpine catchments[J].Hydrological Processes,2012, 26(17):2618-2630.
[10] ROLLAND C.Spatial and seasonal variations of air temperature lapse rates in alpine regions[J]. Journal of Climate, 2003, 16(7): 1032-1046.
[11] 张百平, 姚永慧. 山体效应研究 [M]. 北京: 中国环境出版社, 2015.
[ZHANG B P, YAO Y H.Studies on Mass Elevation Effect. Beijing: China Environmental Press, 2015. ]
[12] 朱连奇. 《山体效应研究》评述[J]. 地理学报, 2016, 71(10): 1871.
[ZHU L Q.The commentary of Studies on mass elevation effect. Acta Geographica Sinica, 2016, 71(10): 1871. ]
[13] 方精云. 我国气温直减率分布规律的研究[J].科学通报,1992,37(9):817-820.
[FANG J Y.Studies on geographic distribution of the altitudinal lapse rate of temperature in China.Chinese Science Bulletin,1992,37(9):817-820.]
[14] 江净超, 刘军志, 秦承志, 等. 中国近地表气温直减率及其季节和类型差异[J]. 地理科学进展, 2016, 35(12): 1538-1548.
[JIANG J C, LIU J Z, QIN C Z, et al.Near-surface air temperature lapse rates and seasonal and type differences in China. Progress in Geography, 2016, 35(12): 1538-1548. ]
[15] SHEN Y J, SHEN Y J, GOETZ J, et al.Spatial-temporal variation of near-surface temperature lapse rates over the Tianshan Mountains, Central Asia[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(23): 14006-14017.
[16] 姚永慧, 张百平. 基于MODIS数据的青藏高原气温与增温效应估算[J]. 地理学报, 2013, 68(1): 95-107.
[YAO Y H, ZHANG B P.MODIS-based estimation of air temperature and heating-up effect of the Tibetan Plateau. Acta Geographica Sinica, 2013, 68(1): 95-107. ]
[17] 姚永慧, 张百平, 韩芳. 基于Modis地表温度的横断山区气温估算及其时空规律分析[J]. 地理学报, 2011, 66(7): 917-927.
[YAO Y H, ZHANG B P, HAN F.MODIS-based air temperature estimation in the Hengduan Mountains and its spatio-temporal analysis. Acta Geographica Sinica, 2011, 66(7): 917-927. ]
[18] VOGT J, VIAU A, PAQUET F.Mapping regional air temperature fields using satellite derived surface skin temperatures[J]. International Journal of Climatology, 1997, 17(14): 1559-1579.
[19] BARRETT E C, CURTIS L F.Introduction to Environmental Remote Sensing[M]. New York: Chapman and Hall, 1993.
[20] GOETZ S J, PRINCE S, SMALL J.Advances in satellite remote sensing of environmental variables for epidemiological applications[J]. Advances in Parasitology, 2000, 47: 289-307.
[21] SEGUIN B.Use of surface temperature in agro-meteorology [C]// TOSELLI F. Applications of Remote Sensing to Agrometeorology. Boston: Kluwer Academic Press, 1991: 221-240.
[22] 姚永慧, 张百平, 赵超. 中国矮曲林的分布特征及生态意义[J]. 地理科学进展, 2017, 36(4): 491-499.
[YAO Y H, ZHANG B P, ZHAO C.Geographical distribution of cripple tree forest and its importance for forest line in China. Progress in Geography, 2017, 36(4): 491-499. ]
[23] YAO Y H, XU M, ZHANG B P.The implication of mass elevation effect of the Tibetan Plateau for altitudinal belts[J]. Journal of Geographical Sciences, 2015, 25(12): 1411-1422.
[24] PENG S S, PIAO S L, CIAIS P, et al.Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation[J]. Nature, 2013, 501(7465): 88-92.
[25] YAO Y H, ZHANG B P.MODIS-based estimation of air temperature of the Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(4): 627-640.
[26] 姚永慧, 张百平. 青藏高原气温空间分布规律及其生态意义[J]. 地理研究, 2015, 34(11): 2084-2094.
[YAO Y H, ZHANG B P.The spatial pattern of monthly air temperature of the Tibetan Plateau and its implications for the geoecology pattern of the Plateau. Geographical Research, 2015, 34(11): 2084-2094. ]
[27] 周扬, 徐维新, 张娟, 等. 2013—2015年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J]. 自然资源学报, 2017, 32(1): 101-113.
[ZHOU Y, XU W X, ZHANG J, et al.A comparative analysis of the two dynamic snow-melting process and their relationship with air temperature during 2013-2015 in the area of Maduo, Tibetan Plateau. Journal of Natural Resources, 2017, 32(1): 101-113. ]
[28] 王卫东, 张国飞, 李忠勤. 近52 a天山乌鲁木齐河源1号冰川平衡线高度及其与气候变化关系研究[J]. 自然资源学报, 2015, 30(1): 124-132.
[WANG W D, ZHANG G F, LI Z Q.Study on equilibrium line altitude and its relationship with climate change of Urumqi Glacier No. 1 in Tianshan Mountains in recent 52 years. Journal of Natural Resources, 2015, 30(1): 124-132. ]
[29] 陈亚宁, 徐长春, 杨余辉, 等. 新疆水文水资源变化及对区域气候变化的响应[J]. 地理学报, 2009, 64(11): 1331-1341.
[CHEN Y N, XU C C, YANG Y H, et al.Hydrology and water resources variation and its responses to regional climate change in Xinjiang. Acta Geographica Sinica, 2009, 64(11): 1331-1341. ]
[30] 陈亚宁, 李稚, 范煜婷, 等. 西北干旱区气候变化对水文水资源影响研究进展[J]. 地理学报, 2014, 69(9): 1295-1304.
[CHEN Y N, LI Z, FAN Y T, et al.Research progress on the impact of climate change on water resources in the arid region of Northwest China. Acta Geographica Sinica, 2014, 69(9): 1295-1304. ]
[31] 李稚, 李卫红, 陈亚宁. 全球变化背景下新疆地区气候跃变的可能影响因素分析[J]. 冰川冻土, 2011, 33(6): 1302-1309.
[LI Z, LI W H, CHEN Y N.Analyses of possible influential factors of climatic jump in Xinjiang region under background of global change. Journal of Glaciology and Geocryology, 2011, 33(6): 1302-1309. ]
[32] LI X P, WANG L, CHEN D L, et al.Near-surface air temperature lapse rates in the mainland China during 1962-2011[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7505-7515.
[33] KIRCHNER M, FAUS-KESSLER T, JAKOBI G, et al.Altitudinal temperature lapse rates in an alpine valley: Trends and the influence of season and weather patterns[J]. International Journal of Climatology, 2013, 33(3): 539-555.
[34] LI Y, ZENG Z Z, ZHAO L, et al.Spatial patterns of climatological temperature lapse rate in mainland China: A multi-time scale investigation[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(7): 2661-2675.
[35] 赵芳, 张百平, 庞宇, 等. 山体效应对北半球林线分布的影响分析[J]. 地理学报, 2012, 67(11): 1556-1564.
[ZHAO F, ZHANG B P, PANG Y, et al.Mass elevation effect and its contribution to the altitude of timberline in the Northern Hemisphere. Acta Geographica Sinica, 2012, 67(11): 1556-1564. ]
[36] 张家诚, 林之光. 中国气候[M]. 上海: 上海科学技术出版社, 1985: 79-97.
[ZHANG J C, LIN Z G.Climate in China. Shanghai: Shanghai Science and Technology Press, 1985: 79-97. ]
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
新疆维吾尔自治区自然科学基金面上项目(2016D01A075)
{{custom_fund}}