1990—2013年中国东北地区湿地生态系统格局演变遥感监测分析

毛德华, 王宗明, 罗玲, 任春颖, 贾明明

自然资源学报 ›› 2016, Vol. 31 ›› Issue (8) : 1253-1263.

PDF(5547 KB)
PDF(5547 KB)
自然资源学报 ›› 2016, Vol. 31 ›› Issue (8) : 1253-1263. DOI: 10.11849/zrzyxb.20151005
资源生态

1990—2013年中国东北地区湿地生态系统格局演变遥感监测分析

  • 毛德华, 王宗明*, 罗玲, 任春颖, 贾明明
作者信息 +

Monitoring the Evolution of Wetland Ecosystem Pattern in Northeast China from 1990 to 2013 Based on Remote Sensing

  • MAO De-hua, WANG Zong-ming, LUO Ling, REN Chun-ying, JIA Ming-ming
Author information +
文章历史 +

摘要

全球变化背景下,湿地生态系统极具敏感性和脆弱性。论文以Landsat TM/ETM+/OLI和国产环境卫星影像为数据源,重建1990、2000和2013年3期东北地区湿地生态系统分布格局;通过将东北地区划分为六大重要湿地分布区,探讨了区域天然湿地与人工湿地的分布和动态空间差异性及其驱动因素。结果表明:1990、2000、2013年东北地区湿地面积分别为11.75×104、10.57×104、10.41×104 km2,湿地率分别为9.45%、8.50%、8.38%。湿地分布具有明显的地域特征,大兴安岭湿地区是最主要的天然湿地分布区,除水田外的人工湿地主要分布在辽河三角洲湿地区。1990—2013年东北地区湿地面积损失严重,损失面积为1.34×104 km2,湿地相对损失率为11.4%,天然湿地相对损失率为14.3%,主要转化为耕地。三江平原湿地区的湿地率下降最明显,天然湿地损失面积为9 935.2 km2;松嫩平原湿地区人工湿地面积增加最明显,增加 1 141.9 km2。气候变化影响叠加人类活动干扰背景下,沼泽湿地是对全球变化响应最显著的湿地类型,损失面积为16 091.4 km2。气候要素和人文因子对湿地影响具有明显的空间差异性,人类活动的变化更加能够主导东北地区湿地面积的变化。

Abstract

With the background of global change, wetland has great sensitivity and vulnerability. In order to investigate the dynamics of the spatial characteristics and heterogeneity of natural and human-made wetlands in Northeast China, the ecosystem pattern of six important wetland regions in the study area in 1990, 2000 and 2013 were rebuilt based on satellite images of Landsat TM, ETM+, OLI and Chinese HJ. Results indicated that the area of wetlands in Northeast China in 1990, 2000 and 2013 was 11.75×104, 10.57×104 and 10.41×104 km2, respectively. The distribution of wetlands had obvious regional features. There are more natural wetlands in the Greater Khingan Mountains wetland region, while there are more human-made wetlands in the Liaohe Delta wetland region. Notable loss of wetlands was observed in Northeast China during 1990-2013 (11.4% of wetland, 14.3% of natural wetland). Most of the disappeared wetlands were converted to croplands. The most significant decrease of wetland area was observed in the Sanjiang Plain with a loss of 9 935.2 km2 for natural wetlands, however significant increase of human-made wetland area was observed in the Songnen Plain, with an increase of 1 141.9 km2. There were clearly spatial differences in the impacts of climatic and human factors on the wetlands. Based on the changing trends of wetland, climate and human factors, human activities were the leading driving force for the losses of wetlands.

关键词

东北地区 / 人工湿地 / 天然湿地 / 遥感

Key words

human-made wetlands / natural wetlands / Northeast China / remote sensing

引用本文

导出引用
毛德华, 王宗明, 罗玲, 任春颖, 贾明明. 1990—2013年中国东北地区湿地生态系统格局演变遥感监测分析[J]. 自然资源学报, 2016, 31(8): 1253-1263 https://doi.org/10.11849/zrzyxb.20151005
MAO De-hua, WANG Zong-ming, LUO Ling, REN Chun-ying, JIA Ming-ming. Monitoring the Evolution of Wetland Ecosystem Pattern in Northeast China from 1990 to 2013 Based on Remote Sensing[J]. JOURNAL OF NATURAL RESOURCES, 2016, 31(8): 1253-1263 https://doi.org/10.11849/zrzyxb.20151005
中图分类号: X171    TP79   

参考文献

[1] DUARTE C M, MUDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle [J]. Biosciences, 2005, 2: 1-8.
[2] ZHANG Y J, XU M, CHEN H, et al. Global pattern of NPP to GPP ratio derived from MODIS data: Effect of ecosystem type, geographical location and climate [J]. Global Ecology and Biogeography, 2009, 18(3): 280-290.
[3] KEDDY P A. Wetland Ecology: Principles and Conservation [M]. Cambridge University Press, 2010.
[4] MITSCH W J, BERNAL B, NAHLIK A M, et al. Wetlands, carbon, and climate change [J]. Landscape Ecology, 2013, 28(4): 583-597.
[5] ARIEIRA J, KARSSENBERG D, DE JONG S M, et al. Integrating field sampling, geostatistics and remote sensing to map wetland vegetation in the Pantanal, Brazil [J]. Biogeosciences, 2011, 8: 667-686.
[6] GONG P, NIU Z G, CHENG X. China’s wetland change (1990-2000) determined by remote sensing [J]. Science in China Series D (Earth Sciences), 2010, 53: 1-7.
[7] REBELO L M, FINLAYSON C M, NAGABHATLA N. Remote sensing and GIS for wetland inventory, mapping and change analysis [J]. Journal of Environmental Management, 2009, 90: 2144-2153.
[8] DAVRANCHE A, LEFEBVRE G, POULIN B. Wetland monitoring using classification trees and SPOT-5 seasonal time series [J]. Remote Sensing of Environment, 2010, 114(3): 552-562.
[9] NIU Z G, GONG P, CHENG X, et al. Geographical characteristics of China’s wetlands derived from remotely sensed data [J]. Science in China Series D (Earth Sciences), 2009, 52(6): 723-738.
[10] 刘红玉, 李玉凤, 曹晓, 等. 我国湿地景观研究现状、存在的问题与发展方向 [J]. 地理学报, 2009, 64(11): 1394-1401.

[11] 刘兴土. 东北湿地 [M]. 北京: 科学出版社, 2005.

[12] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440: 165-173.
[13] WANG Z M, SONG K S, MA W H, et al. Loss and fragmentation of marshes in the Sanjiang Plain, Northeast China, 1954-2005 [J]. Wetlands, 2011, 31: 945-954.
[14] WANG Z M, WU J G, MADDEN M, et al. China’s wetlands: Conservation plans and policy impacts [J]. AMBIO, 2012, 41: 782-789.
[15] WANG Z M, HUANG N, LUO L, et al. Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes [J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13: 477-486.
[16] 毛德华, 王宗明, 韩佶兴, 等. 1982—2010年中国东北地区植被NPP时空格局及驱动因子分析 [J]. 地理科学, 2012, 32(9): 1106-1111.

[17] 谢静, 王宗明, 毛德华, 等. 基于面向对象方法和多时相HJ-1影像湿地遥感分类——以完达山以北三江平原为例 [J]. 湿地科学, 2012, 10(4): 429-438.

[18] MAO D H, WANG Z M, LI L, et al. Quantitative assessment of human-induced impacts on marshes in Northeast China from 2000 to 2011 [J]. Ecological Engineering, 2014, 68: 97-104.
[19] 孙广友. 试论沼泽与冻土的共生机理——以中国大小兴安岭地区为例 [J]. 冰川冻土, 2000, 22(4): 309-316.

[20] 李宁, 刘吉平, 王宗明. 2000—2010年东北地区湖泊动态变化及驱动力分析 [J]. 湖泊科学, 2014, 26(4): 545-551.

[21] JIA M M, WANG Z M, LIU D W, et al. Monitoring loss and recovery of salt marshes in the Liao River Delta, China [J]. Journal of Coastal Research, 2015, 31(2): 371-377.
[22] SONG K S, WANG Z M, LI L, et al. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng-Xingkai Plain, China [J]. Journal of Environmental Management, 2012, 111: 120-132.
[23] SONG K S, WANG Z M, DU J, et al. Wetland degradation: Its driving forces and environmental impacts in the Sanjiang Plain, China [J]. Environmental Management, 2014, 54: 255-271.

基金

国家自然科学基金项目(41401502,41371403); 中国科学院战略性先导科技专项子课题(XDA05050101); 国家重点基础发展研究计划(973)计划专题(2012CB956103)
PDF(5547 KB)

1768

Accesses

0

Citation

Detail

段落导航
相关文章

/