自然资源学报 ›› 2011, Vol. 26 ›› Issue (6): 1065-1074.doi: 10.11849/zrzyxb.2011.06.017
白继中1,2, 师彪1, 冯民权1, 周利坤1,3
BAI Ji-zhong1,2, SHI Biao1, FENG Min-quan1, ZHOU Li-kun1,3
摘要: 径流预测历来是水利部门的一项重要工作,针对水库和河流中长期径流预测精度不高,提出了自适应调节人工蚁群算法(ARACS),对RBF神经网络参数进行优化,建立了自适应调节人工蚁群-RBF神经网络组合算法(ARACS-RBF)预测模型,综合考虑影响径流预变化因素,对安康水库进行中长期径流预测。对预测效果进行检验,结果证实该模型可真实地反映河川径流变化的总体趋势, 并为判断时间序列数据的非线性提供了一种新方法。与RBF神经网络模型、人工蚁群-RBF神经网络模型预测结果进行对比,结果表明,应用ARACS-RBF模型对中长期径流量进行预测,预测精度更高、效果更好。该方法克服了RBF神经网络和人工蚁群算法易陷于局部极值、搜索质量差和精度不高的缺点,改善了RBF神经网络的泛化能力,收敛速度快,输出稳定性好,提高了径流预测的精度,置信度为98%时的预测相对误差小于6.5%。可有效用于水库和河川中长期径流预测。
中图分类号:
P338+.2