风蚀在黄土高原风水蚀复合区的侵蚀产沙中扮演着重要的角色。利用窟野河流域神木水文站水沙资料及有关气象资料,分析了风蚀对窟野河神木水文站以上流域产沙贡献的时间尺度特征。结果表明,风力的侵蚀搬运对窟野河流域产沙起着重要的作用。月时间尺度上,风沙入河量存在"存储—释放"的过程;风蚀产沙贡献在3月和11—12月出现高峰值,4—9月风蚀贡献率逐渐降低;冬春季节淤积的泥沙,在夏季逐渐被冲走,到了9月,把淤积的泥沙最大限度冲走而开始新的淤积过程;月时间尺度上风蚀贡献率与风蚀气候因子分布趋势一致;7、8两月的风沙贡献量占年风蚀贡献总量的80.5%,风沙贡献量的峰值出现在7月,约7.75×106 t。季尺度上,夏季风蚀贡献率最低,仅7.8%。秋、冬季逐渐升高,春季达到最高,风蚀贡献率为28.6%。年尺度上,风力作用对神木水文站以上流域的产沙贡献为17.2%,风蚀贡献量为12.7×106 t/a。
Abstract
Wind erosion plays an important role on sediment yield in complex erosion zone by wind and water of the Loess Plateau. Contribution characteristics of wind erosion to the sediment yield in the Kuyehe River watershed at time scales was estimated based on the sediment discharge records at Shenmu Hydrological Station and meteorological measurements recorded at meteorological stations in and around the watershed. The results reveal that wind erosion is a principal contributor to sediment yield of the Kuyehe River watershed. At the monthly scale, sediment yield from wind erosion had a restore-release process. Wind erosion contribution rate was the highest in March and November-December, and was lower from April to September. Alluvial sediment in winter and spring was gradually discharged in summer. The wind erosion contribution rate at the monthly scale was consistent with the wind erosion climatic factor. The amount of sediment of July and August from wind erosion occupied 80.5% of the total amount of a year. At the seasonal scale, wind erosion contribution rate in summer was the lowest of 7.8%, and gradually increased in autumn and winter, then reached the highest in spring of 28.6%. At yearly scale, wind erosion contribution rate is about 17.2% at catchments upstream of Shenmu Hydrological Station in the Kuyehe River watershed during the period 1956-1970.
关键词
风蚀产沙 /
风蚀气候因子 /
风水复合侵蚀
{{custom_keyword}} /
Key words
wind erosion contribution to sediment yield /
wind erosion climatic factor /
complex erosion by wind and water
{{custom_keyword}} /
中图分类号:
TV141
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 查轩, 唐克丽. 风蚀水蚀交错带小流域生态环境综合治理模式研究[J]. 自然资源学报, 2000, 15(1): 97-100.
[2] Li M, Li Z B, Liu P L, et al. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the wind-water erosion crisscross region on the Loess Plateau of China [J]. Applied Radiation and Isotopes, 2005, 62: 109-113.
[3] 许炯心. 黄河中游多沙粗沙区的风水两相侵蚀产沙过程[J]. 中国科学D辑, 2000, 30(5): 540-548.
[4] 高学田, 唐克丽. 风蚀水蚀交错带侵蚀能量特征[J]. 水土保持通报, 1996, 16(3): 27-31, 60.
[5] 许炯心. 黄河中游支流悬移质粒度与含沙量、流量间的复杂关系[J]. 地理研究, 2003, 22(1): 39-48.
[6] 陈正宜. 毛乌素沙漠与黄河粗泥沙来源的遥感分析[J]. 遥感信息, 1991(3): 22-24.
[7] 杨根生, 刘阳宣, 史培军. 黄河沿岸风成沙入黄沙量估算[J]. 科学通报, 1988, 33(13): 1017-1017.
[8] 冯国安. 黄河中游粗沙的来源主要是风沙[J]. 中国水土保持, 1992(3): 45-47.
[9] 陈永宗, 景可, 蔡强国. 黄土高原现代侵蚀与治理[M]. 北京: 科学出版社, 1988.
[10] 吴成基, 甘枝茂, 孙虎, 等. 河龙区间六条流域产粗沙量研究[J]. 人民黄河, 1997(4): 21-24.
[11] 中国科学院黄土高原综合科学考察队. 黄土高原地区北部风沙区土地沙漠化综合治理[M]. 北京: 科学出版社, 1991.
[12] 张胜利, 陈发中. 黄河中游多沙粗沙区风蚀产沙对黄河粗泥沙影响分析[J]. 中国水土保持, 1997(9): 13-18.
[13] 许炯心. 风水两相作用对黄河流域高含沙水流的影响[J]. 中国科学D辑, 2005, 35(9): 899-906.
[14] 师长兴. 风力侵蚀对无定河流域产沙作用定量分析[J]. 地理研究, 2006, 25(2): 285-293.
[15] 董玉祥, 康国定. 中国干旱半干旱地区风蚀气候侵蚀力的计算与分析[J]. 水土保持学报, 1994, 8(3): 1-7.
[16] FAO. A Provisional Methodology for Soil Degradation Assessment [M]. Rome, 1979.
[17] 程天文, 程维新. 农田蒸发与蒸发力的测定及其计算方法//地理集刊, 第12号, 水文分析与实验. 北京: 科学出版社, 1980: 74-83.
[18] XU Jiong-xin, HU Chun-hong, CHEN Jian-guo. Effect of suspended sediment grain size on channel sedimentation in the lower Yellow River and some implications [J]. Science in China Series E: Technological Sciences, 2009, 52(8): 2330-2339.
[19] 冯国安. 黄河中游粗沙的来源主要是风沙(续) [J]. 中国水土保持, 1992(4): 44-47.
[20] 方学敏. 黄河干流宁蒙河段风沙入黄沙量计算[J]. 人民黄河, 1993(4): 1-3.
[21] 史学建, 刘宇梁, 黄静, 等. 再谈黄河中游粗泥沙的来源[J]. 人民黄河, 2007, 29: 62-63.
[22] 张平仓, 查轩, 唐克丽. 水蚀风蚀交错带小流域不同地层侵蚀产沙量及其特征[J]. 土壤侵蚀与水土保持学报, 1997, 3(1): 1-9.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中国科学院知识创新工程重要方向项目(KZCX2-YW-442); 黄土高原土壤侵蚀与旱地农业国家重点实验室基金项目(10501-225);水利部黄河泥沙重点实验室开放课题(2010007);中国博士后科学基金资助项目(20090460421);中国科学院院长奖获得者科研启动专项。
{{custom_fund}}