以京杭大运河无锡段2003年7月和12月两景SPOT-5正射影像为数据源,结合断面水质数据,利用基于最小二乘法的多元回归方法,建立了枯水期和丰水期水质参数与土地利用的响应模型。结果表明:以监测断面为中心的缓冲区距离的空间变化与水质监测指标之间有很明显的响应关系,建立的模型显示,丰水期DO、CODMn、BOD5、TN和TP的最大响应宽度分别为100、100、300、200和100 m,枯水期的最大响应宽度则为500、200、300、400和200 m。运河的水质污染主要受离河岸较近的土地利用结构的影响,耕地上产生的农业污水、商业和工业中的废水以及大面积裸地上居民生活垃圾和建筑垃圾产生的污水是导致京杭大运河无锡段水质恶化的重要原因。
Abstract
Taking two SPOT-5 orthophoto images of Beijing-Hangzhou Grand Canal in 2003 as the data source, this paper uses the least square multiple regression to build the model between water quality data and land-use proportion in high flow period and low water period. The result shows that the spatial change of the buffer distance which is the center of the monitoring sections presents obvious responsive relationship with water quality monitoring indexes. In high flow period, the maximum response ranges of DO, CODMn, BOD5, TN and TP are 100 m, 100 m, 300 m, 200 m and 100 m, respectively. But in low water period, the maximum response ranges are 500 m, 200 m, 300 m, 400 m and 200 m. The canal water pollution is influenced by neritic land-use structure. Agricultural effluent, commercial and industrial wastewater, bare land effluent, which are composed by living rubbish and construction refuse, are the important reasons to cause the Beijing-Hangzhou Grand Canal water quality deterioration.
关键词
遥感 /
土地利用 /
空间统计 /
水质响应
{{custom_keyword}} /
Key words
remote sensing /
land-use /
space statistical /
water quality response
{{custom_keyword}} /
中图分类号:
X522
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李怀恩.水文模型在非点源污染研究中的应用[J].陕西水利, 1987(3): 18-23.
[2] Tong S T Y, Chen W.Modeling the relationship between land use and surface water quality [J]. Journal of Environmental Management, 2002(66): 377-393.
[3] Fisher D S, Stener D M, Endale D M, et al. The relationship of land use practices to surface water quality in the upper Oconee Watershed of Georgia forest [J]. Ecology and Management, 2000, 128(1): 39-48.
[4] Steiner F, Mcsherr Y L, Cohen J. Land suitability analysis for the upper Gila River Watershed [J]. Landscape and Urban Planning, 2000, 50(1): 199-214.
[5] Sliva L, Wlliams D D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality[J]. Water Research, 2001, 35(14): 3462-3472.
[6] Maillard P, Antonia N. A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed—Brazil[J]. Journal of Environment Management, 2008, 56: 158-170.
[7] 杨柳, 马克明, 郭青海, 等.城市化对水体非点源污染的影响[J].环境科学, 2004, 25(6): 32-39.
[8] 宋述君, 周万村.岷江流域土地利用结构对地表水水质的影响[J].长江流域资源与环境, 2008, 17(5): 712-715.
[9] 张然, 张晶香.土地利用对滇池水环境的影响[J].曲靖师范学院学报, 2007, 26(6): 20-23.
[10] 于兴修, 杨桂山.典型流域土地利用/覆被变化及对水质的影响——以太湖上游浙江苕溪流域为例[J]. 长江流域资源与环境, 2003, 12(3): 211-217.
[11] 邓国军, 刘凯, 王树功, 等.土地利用快速变化对松山湖水库水质的影响分析[J].热带地理, 2008, 28(2): 124-128.
[12] 黄沈发, 王敏, 车越, 等.平原河网地区水源地水质对土地利用变化的响应——以黄浦江上游水源地为例[J].生态与农村环境学报, 2006, 22(4): 14-19.
[13] 刘耀彬, 陈斐, 李仁东.区域城市化与生态环境耦合发展模拟及调控策略——以江苏省为例[J].地理研究, 2007, 26(1): 187-196.
[14] 官宝红, 李君, 曾爱斌, 等.杭州市城市土地利用对河流水质的影响[J].资源科学, 2008, 30(6): 857-863.
[15] 权瑞松, 刘敏, 侯立军, 等.土地利用动态变化对地表径流的影响——以上海浦东新区为例[J].灾害学, 2009, 24(1): 44-49.
[16] 涂晓松, 濮励杰, 吴骏, 等.基于SLEUTH模型的无锡市区土地利用变化情景模拟[J].长江流域资源与环境, 2008, 17(6): 860-865.
[17] 姚士谋, 陈爽, 解晓南, 等.我国城市化过程中水土资源利用问题的认识——以长江中下游地区若干城市地区为例[J].长江流域资源与环境, 2008, 17(5): 723-728.
[18] 无锡市统计局.无锡统计年鉴[Z].北京: 中国统计出版社, 2008.
[19] 戴秀丽, 戚文炜, 过伟.京杭大运河(无锡段)及其支流沉积物中重金属污染现状及分布特征[J].青海环境, 2002, 12(4): 139-143.
[20] 王桥, 张兵, 韦玉春, 等.太湖水体环境遥感监测实验及其软件实现[M].北京: 科学出版社, 2008: 6-7.
[21] 李小娟, 刘晓萌, 胡德勇, 等.ENVI遥感影像处理教程(升级版)[M].北京: 中国环境科学出版社, 2008: 280-281.
[22] 柏仇勇, 张宁红.《太湖流域主要污染物入湖总量研究性监测》项目工作报告.南京: 江苏省环境监测中心, 2002: 22-23.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家水体污染控制与治理科技重大专项"国家水环境遥感技术体系研究与示范"(2009ZX07527-006)。
{{custom_fund}}