自然资源学报 ›› 2020, Vol. 35 ›› Issue (6): 1314-1325.doi: 10.31497/zrzyxb.20200605
张清华1, 赵玉峰1, 2, 唐家良3, 陆文3, 罗专溪1
收稿日期:
2019-07-05
修回日期:
2020-03-26
出版日期:
2020-06-28
发布日期:
2020-06-28
通讯作者:
罗专溪(1979-), 男, 福建泉州人, 博士, 副研究员, 研究方向为城市水污染过程与控制。E-mail:zxluo@iue.ac.cn
作者简介:
张清华(1990-), 男, 广西合浦人, 硕士, 研究方向为环境地球化学。E-mail:tsinghua_cags@163.com
基金资助:
ZHANG Qing-hua1, ZHAO Yu-feng1, 2, TANG Jia-liang3, LU Wen3, LUO Zhuan-xi1
Received:
2019-07-05
Revised:
2020-03-26
Online:
2020-06-28
Published:
2020-06-28
摘要: 为揭示京津冀西北典型流域地下水循环特征,运用环境同位素和水化学技术等方法分析张家口市不同流域水体氢氧同位素特征、水化学特征及时空变化特征、地表地下水转化关系。结果表明:地表水化学类型主要为HCO3-Mg·Na和HCO3·Cl-Na型;地下水化学类型不同时期表现出不同的类型,水化学类型更为多样,主要以HCO3-Mg·Na型、HCO3·Cl-Na型、HCO3·Cl-Na·Mg为主。地表河水和地下水中离子均主要来源于岩石风化作用;张北和桑干河流域地下水中离子偏向于蒸发浓缩作用控制。张家口市各流域地表地下水δ18O、δD组成较为接近,表明了当地地表水和地下水均受到大气降水的补给。大气降水和地表河水对地下水的补给比例均值分别为37.74%和62.26%,以地表河水的补给为主要方式。
张清华, 赵玉峰, 唐家良, 陆文, 罗专溪. 京津冀西北典型流域地下水化学特征及补给源分析[J]. 自然资源学报, 2020, 35(6): 1314-1325.
ZHANG Qing-hua, ZHAO Yu-feng, TANG Jia-liang, LU Wen, LUO Zhuan-xi. Hydrochemistry characteristics and the recharge source of groundwater in typical watersheds of Beijing-Tianjin-Hebei region, China[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(6): 1314-1325.
[1] 詹泸成, 陈建生, 张时音, 等. 洞庭湖湖区降水—地表水—地下水同位素特征. 水科学进展, 2014, 25(3): 327-335. [ZHAN L C, CHEN J S, ZHANG S Y, et al.Characteristics of stable isotopes in precipitation, surface water and groundwater in the Dongting Lake region. Advances in Water Science, 2014, 25(3): 327-335.] [2] 于静洁, 宋献方, 刘相超, 等. 基于 [YU J J, SONG X F, LIU X C, et al.A study of groundwater cycle in Yongding River Basin by using [3] 姚天次, 章新平, 李广, 等. 湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系. 自然资源学报, 2016, 31(7): 1198-1210. [YAO T C, ZHANG X P, LI G, et al.Characteristics of the stable isotopes in different water bodies and their relationships in surrounding areas of Yuelu mountain in the Xiangjiang River Basin. Journal of Natural Resources, 2016, 31(7): 1198-1210.] [4] ARUMUGAM K, ELANGOVAN K.Hydrochemical characteristics and groundwater quality assessment in Tirupur region, Coimbatore District, Tamil Nadu, India. Environmental Geology, 2009, 58(7): 1509-1520. [5] PERRY E, PAYTAN A, PEDERSEN B, et al.Groundwater geochemistry of the Yucatan Peninsula, Mexico: Constraints on stratigraphy and hydrogeology. Journal of Hydrology, 2009, 367(1): 27-40. [6] WANG S.Hydrochemical and isotopic characteristics of groundwater in the Yanqi Basin of Xinjiang province, Northwest China. Environmental Earth Sciences, 2014, 71(1): 427-440. [7] LI A J, SCHMITZ O J, STEPHAN S, et al.Photocatalytic transformation of acesulfame: Transformation products identification and embryotoxicity study. Water Research, 2016, 89: 68-75. [8] HUANG T, PANG Z.Changes in groundwater induced by water diversion in the lower Tarim River, Xinjiang, NW China: Evidence from environmental isotopes and water chemistry. Journal of Hydrology, 2010, 387: 188-201. [9] GUO X Y, FENG Q, LIU W, et al.Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of northwestern China. Hydrological Processes, 2015, 29(22): 4703-4718. [10] ANNE R, KIRSTI K N.Chemical and isotopic tracers indicating groundwater/surface-water interaction within a boreal lake catchment in Finland. Hydrogeology Journal, 2015, 23(4): 687-705. [11] 张应华, 仵彦卿, 丁建强, 等. 运用氧稳定同位素研究黑河中游盆地地下水与河水转化. 冰川冻土, 2005, 27(1): 106-110. [ZHANG Y H, WU Y Q, DING J Q, et al.Exchange of groundwater and river water in a basin of the middle Heihe River by using [12] SCANLON B R, KEESE K E, FLINT A L, et al.Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 2010, 20(15): 3335-3370. [13] SCANLON B R, REEDY R C, STONESTROM D A, et al.Impact of land use and land cover change on groundwater recharge and quality in the Southwestern US. Global Change Biology, 2010, 11(10): 1577-1593. [14] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征. 地球科学与环境学报, 2013, 35(4): 104-112. [WANG J Z, WU J L, ZENG H A, et al.Characteristics of water isotope and hydrochemistry in Hetao Plain of Inner Mongolia. Journal of Earth Sciences and Environment, 2013, 35(4): 104-112.] [15] ADHIKARY P P, CHANDRASEKHRAN H, DASH C J, et al.Integrated isotopic and hydrochemical approach to identify and evaluate the source and extend of groundwater pollution in West Delhi, India. Indian Journal of Soil Conservation, 2014, 42(1): 17-28. [16] 谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据. 地球科学进展, 2017, 32(8): 789-799. [GU H B, CHI B M, WANG H, et al.Relationship between surface water and groundwater in the Liujiang Basin: Hydrochemical constrains. Advances in Earth Science, 2017, 32(8): 789-799.] [17] 张兵, 宋献方, 张应华, 等. 三江平原地表水与地下水氢氧同位素和水化学特征. 水文, 2014, 34(2): 38-43. [ZHANG B, SONG X F, ZHANG Y H, et al.Hydrogen and oxygen isotopic and hydrochemical characteristics of water in Sanjiang Plain. Journal of China Hydrology, 2014, 34(2): 38-43.] [18] 田媛, 许月卿, 郭洪峰, 等. 基于多分类Logistic回归模型的张家口市农用地格局模拟. 资源科学, 2012, 34(8): 1493-1499. [TIAN Y, XU Y Q, GUO H F, et al.Simulation of farmland use pattern in Zhangjiakou based on multinomial logistic regression model. Resources Science, 2012, 34(8): 1493-1499.] [19] 张家口水文局. 河北省张家口市水资源评价报告. 张家口: 张家口水文局, 2005. [Zhangjiakou Hydrographic Bureau.Water Resources Evaluation Report of Zhangjiakou City, Hebei Province. Zhangjiakou: Zhangjiakou Hydrographic Bureau, 2005.] [20] 艾慧, 郭得恩. 地下水超采威胁华北平原. 生态经济, 2018, 34(8): 10-13. [AI H, GUO D E.Groundwater over-exploitation threatens the North China Plain. Ecological Economy, 2018, 34(8): 10-13.] [21] 孙杰肖. 张家口市水中长期供需预测及平衡分析. 保定: 河北农业大学, 2013: 12-13. [SUN J X.Medium and long-term supply and demand forecasts and balance analysis in water resources of Zhangjiakou city. Baoding: Agricultural University of Hebei, 2013: 12-13.] [22] 孙丕苓, 许月卿, 王数. 环京津贫困带土地利用变化的地形梯度效应分析. 农业工程学报, 2014, 30(14): 277-288. [SUN P L, XU Y Q, WANG S.Terrain gradient effect analysis of land use change in poverty area around Beijing and Tianjin. Transactions of the CSAE, 2014, 30(14): 277-288.] [23] 戚帮申. 张家口地区地壳稳定性研究. 北京: 中国地质科学院, 2017. [QI B S.Assessment and zonation of regional crustal stability in Zhangjiakou region. Beijing: Chinese of Geological Science, 2017.] [24] 郑晓红. 地表水中总磷和总氮对藻类生长的影响以及藻类生长对pH值和溶解氧含量的影响. 仪器仪表与分析监测, 2012, (3): 43-45. [ZHENG X H.The effect of total phosphorus and total nitrogen on the growth of algae in the surface water and the effect of algae growth on pH and dissolved oxygen. Instrumentation and Analysis Monitoring, 2012, (3): 43-45.] [25] GIBBS R J.Mechanisms controlling world water chemistry. Science, 1970, 170(3962): 1088-1090. [26] 王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因. 地质通报, 2010, 29(2-3): 446-456. [WANG Y P, WANG L, XU C X, et al.Hydro-geochemistry andgenesis of major ions in the Yangtze River, China. Geological Bulletin of China, 2010, 29(2-3): 446-456.] [27] CRAING. Isotopic variation in meteoric waters. Science, 1961, 133: 1702-1703. [28] 连英立, 张光辉, 聂振龙, 等. 张掖盆地地下水及其补给水源的同位素特征. 勘察科学技术, 2011, 2(5): 11-16. [LIAN Y L, ZHNAG G H, NIE Z L, et al.Isotope characteristics of groundwater and its recharge water in Zhangye Basin. Site Investigation Science and Technology, 2011, 2(5): 11-16.] [29] 钱云平, 林学钰, 秦大军, 等. 应用同位素研究黑河下游额济纳盆地地下水. 干旱区地理, 2005, 28(5): 574-580. [QIAN Y P, LIN X Y, QIN D J, et al.Study on groundwater of the Ejin Basin at the lower reaches of the Heihe River using isotopes. Arid Land Geography, 2005, 28(5): 574-580.] [30] 蒋保刚, 闫正, 宋献方, 等. 汉江上游金水河流域河水的化学特征. 环境化学, 2013, 32(6): 980-986. [JIANG B G, YAN Z, SONG X F, et al.Water chemistry of the Jinshui River Basin in the upper Han River. Environmental Chemistry, 2013, 32(6): 980-986.] [31] 殷秀兰, 李文鹏, 王俊桃, 等. 新疆柴窝堡盆地地下水化学及稳定同位素研究. 地质学报, 2010, 84(3): 439-448. [YIN X L, LI W P, WANG J T, et al.Hydro-chemical and isotopic research in Chaiwopu Basin, Ürümqi River catchment. Acta Geologica Sinica, 2010, 84(3): 439-448.] [32] 张清华. 漓江流域外源水对岩溶无机碳通量的影响. 桂林: 桂林理工大学, 2018. [ZHANG Q H.The effect of allogenic water on karst inorganic carbon flux in Lijiang River Basin. Guilin: Guilin University of Technology, 2018.] [33] 宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征. 地理研究, 2007, 26(1): 11-21. [SONG X F, LI F D, YU J J, et al.Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin. Geographical Research, 2007, 26(1): 11-21.] [34] HSIN F Y, HUNG-I L, CHENG-HAW L, et al.Identifying seasonal groundwater recharge using environmental stable isotopes. Water, 2014, 6(10): 2849-2861. |
[1] | 徐超璇, 鲁春霞, 黄绍琳. 张家口地区生态脆弱性及其影响因素[J]. 自然资源学报, 2020, 35(6): 1288-1300. |
[2] | 赵玉峰, 罗专溪, 于亚军, 陈迎辉, 张树刚, 张清华. 京津冀西北典型区域地下水位时空演变及驱动因素[J]. 自然资源学报, 2020, 35(6): 1301-1313. |
[3] | 昝欣, 张玉玲, 贾晓宇, 熊广森. 永定河上游流域水生态系统服务价值评估[J]. 自然资源学报, 2020, 35(6): 1326-1337. |
[4] | 马维兢, 耿波, 杨德伟, 刘丹丹, 徐凌星, ClaudienHabimanaSimbi, 于慧, ChristianOpp. 部门水足迹及其经济效益的时空匹配特征研究[J]. 自然资源学报, 2020, 35(6): 1381-1391. |
[5] | 韩雁, 贾绍凤, 鲁春霞, 吕爱锋. 水资源与社会经济发展要素时空匹配特征——以张家口为例[J]. 自然资源学报, 2020, 35(6): 1392-1401. |
[6] | 仲佳, 于慧, 刘邵权. 张家口市排污工业点源空间分布格局[J]. 自然资源学报, 2020, 35(6): 1402-1415. |
[7] | 雷义珍, 曹生奎, 曹广超, 杨羽帆, 兰垚, 季雨桐, 李华非. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538. |
[8] | 龚亚珍, 关宝珠, 代喆, 张惠. 基于外部效应分析机井密度对地下水位的影响[J]. 自然资源学报, 2019, 34(3): 633-645. |
[9] | 赵自国, 赵凤娟, 夏江宝, 王月海. 地下水矿化度对黄河三角洲柽柳光合及耗水特征的影响[J]. 自然资源学报, 2019, 34(12): 2588-2600. |
[10] | 任冉冉, 夏江宝, 张淑勇, 赵自国, 赵西梅. 黄河三角洲柽柳光合作用及树干液流对潜水埋深的响应[J]. 自然资源学报, 2019, 34(12): 2615-2628. |
[11] | 罗文哲, 蒋艳灵, 王秀峰, 刘华先, 陈远生. 华北地下水超采区农户节水灌溉技术认知分析——以河北省张家口市沽源县为例[J]. 自然资源学报, 2019, 34(11): 2469-2480. |
[12] | 袁瑞强, 张文新, 王鹏, 王仕琴. 引黄调水对汾河受水区水环境的影响[J]. 自然资源学报, 2018, 33(8): 1416-1426. |
[13] | 吕梦宇, 王仕琴, 齐永青, 孔晓乐, 孙宏勇. 华北低平原区降水与坑塘蓄水响应关系研究——以河北省南皮县为例[J]. 自然资源学报, 2018, 33(10): 1796-1805. |
[14] | 刘超, 霍永伟, 许月卿, 黄安, 孙丕苓, 卢龙辉. 生态退耕前后张家口市耕地变化及影响因素识别[J]. 自然资源学报, 2018, 33(10): 1806-1820. |
[15] | 崔丽娟, 赵欣胜, 李伟, 康晓明, 雷茵茹, 张曼胤, 孙宝娣, 于菁菁. 基于土壤渗透系数的吉林省湿地补给地下水功能分析[J]. 自然资源学报, 2017, 32(9): 1457-1468. |
|