[1] LIU J, BOWMAN K W, SCHIMEL D S, et al.Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science, 2017, 358(6360): 5690. [2] KOGAN F, GUO W.Strong 2015-2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing, 2017, 38(1): 161-178. [3] BARBER R T, CHAVEZ F P.Biological consequences of El Niño. Science, 1983, 222(4629): 1203-1210. [4] CAMINADE C, TURNER J, METELMANN S, et al.Global risk model for vector-borne transmission of Zika virus reveals the role of El Nino 2015. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7): 119-124. [5] THIRUMALAI K, DINEZIO P N, OKUMURA Y, et al.Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communications, 2017, 8(1): 15531. [6] 李明, 柴旭荣, 王贵文, 等. 长江中下游地区气象干旱特征. 自然资源学报, 2019, 34(2): 374-384. [LI M, CHAI X R, WANG G W, et al.Research on meteorological drought in the middle and lower reaches of the Yangtze River. Journal of Natural Resources, 2019, 34(2): 374-384.] [7] 石培礼, 李文华. 森林植被变化对水文过程和径流的影响效应. 自然资源学报, 2001, 16(5): 481-487. [SHI P L, LI W H.Influence of forest cover change on hydrological process and watershed runoff. Journal of Natural Resources, 2001, 16(5): 481-487.] [8] 朱士华, 艳燕, 邵华, 等. 1980—2014年中亚地区植被净初级生产力对气候和CO2变化的响应. 自然资源学报, 2017, 32(11): 1844-1856. [ZHU S H, YAN Y, SHAO H, et al.The responses of the net primary productivity of the dryland ecosystems in Central Asia to the CO2 and climate changes during the past 35 years. Journal of Natural Resources, 2017, 32(11): 1844-1856.] [9] 柳媛普, 王素萍, 王劲松, 等. 气候变暖背景下西南地区干旱灾害风险评估. 自然资源学报, 2018, 33(2): 325-336. [LIU Y P, WANG S P, WANG J S, et al.Risk assessment of drought disaster in Southwest China under the background of climate warming. Journal of Natural Resources, 2018, 33(2): 325-336.] [10] CHEN Y, MORTON D C, ANDELA N, et al.A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017, 7(12): 906-911. [11] ANDELA N, VAN DER WERF G R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 2014, 4(9): 791-795. [12] FULLER D O, MURPHY K.The enso-fire dynamic in Insular Southeast Asia. Climatic Change, 2006, 74(4): 435-455. [13] CHEN Y, MORTON D C, ANDELA N, et al.A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 2017, 7(12): 906-911. [14] FIELD R D, VAN DER WERF G R, FANIN T, et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. PNAS, 2016, 113(33): 9204. [15] KONDO M, ICHII K, PATRA P K, et al.Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9(1): 1-7. [16] LEE B P Y, DAVIES Z G, STRUEBIG M J. Smoke pollution disrupted biodiversity during the 2015 El Nino fires in Southeast Asia. Environmental Research Letters, 2017, 12(094022): 1-7. [17] VAROTSOS C A, TZANIS C G, SARLIS N V.On the progress of the 2015-2016 El Niño event. Atmospheric Chemistry and Physics, 2016, 16(4): 2007-2011. [18] VAN DER WERF G R, RANDERSON J T, COLLATZ G J, et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 2004, 303(5654): 73-76. [19] 黄宝荣, 欧阳志云, 张慧智, 等. 海南岛天然林生态系统不同人类胁迫图论分析. 自然资源学报, 2009, 24(1): 154-161. [HUANG B R, OUYANG Z Y, ZHANG H Z, et al.A graph-theoretic analysis of relationships among anthropogenic stressors on natural forest in Hainan Island. Journal of Natural Resources, 2009, 24(1): 154-161.] [20] SMITH S C, UBILAVA D.The El Niño Southern Oscillation and economic growth in the developing world. Global Environmental Change, 2017: 151-164. [21] GIGLIO L, VAN DER WERF G R, RANDERSON J T, et al. Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 2006, 6(4): 957-974. [22] LI P, FENG Z M.Extent and area of swidden in montane mainland Southeast Asia: Estimation by Multi-Step Thresholds with Landsat-8 OLI data. Remote Sensing, 2016, 8(1): 44. [23] LI P, FENG Z M, XIAO C, et al.Detecting and mapping annual newly-burned plots (NBP) of swiddening using historical Landsat data in Montane Mainland Southeast Asia (MMSEA) during 1988-2016. Journal of Geographical Sciences, 2018, 28(9): 1307-1328. [24] NOOJIPADY P, MORTON D C, SCHROEDER W, et al.Managing fire risk during drought: The influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth System Dynamics, 2017, 8(3): 749-771. [25] SCHROEDER W, OLIVA P, GIGLIO L, et al.The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 2014, 143(5): 85-96. [26] SCHROEDER W, OLIVA P, GIGLIO L, et al.Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment, 2016, 185: 210-220. [27] KASISCHKE E S, HEWSON J H, STOCKS B, et al.The use of ATSR active fire counts for estimating relative patterns of biomass burning-a study from the boreal forest region. Geophysical Research Letters, 2003, 30(18): 1-4. [28] OLIVA P, SCHROEDER W.Assessment of VIIRS 375 m active fire detection product for direct burned area mapping. Remote Sensing of Environment, 2015, 160: 144-155. [29] PALMER P I.The role of satellite observations in understanding the impact of El Niño on the carbon cycle: Current capabilities and future opportunities. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2018, 373(1760): 1-12. [30] REICHE J, VERHOEVEN R, VERBESSELT J, et al.Characterizing tropical forest cover loss using Dense Sentinel-1 data and active fire alerts. Remote Sensing, 2018, 10(5): 777. [31] VAN DER WERF G R, RANDERSON J T, GIGLIO L, et al. Global fire emissions estimates during 1997-2016. Earth System Science Data, 2017, 9(2): 697-720. [32] ANDELA N, MORTON D C, LOUIS G, et al.The Global Fire Atlas of individual fire size, duration, speed, and direction. Earth Syst Dynam, 2019, 11(2): 529-552. [33] 李鹏, 李文君, 封志明, 等. 基于FIRMS MODIS与VIIRS的东南亚活跃火频次时空动态分析. 资源科学, 2019, 41(8): 1526-1540. [LI P, LI W J, FENG Z M, et al.Spatiotemporal dynamics of active fire frequency in Southeast Asia with the FIRMS Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer (VIIRS) data. Resources Science, 2019, 41(8): 1526-1540.] [34] 刘佳, 梁一行, 李鹏, 等. 2001—2018年印度尼西亚MODIS活跃火的发生特征与响应. 地理学报, 2020, 75(9): 1907-1920. [LIU J, LIANG Y H, LI P, et al.Occurrence characteristics and response to El Niño of MODIS-based active fires in Indonesia during 2001-2018. Acta Geographica Sinica, 2020, 75(9): 1907-1920.] [35] LI P, XIAO C W, FENG Z M, et al.Occurrence frequencies and regional variations in VIIRS global active fires. Global Change Biology, 2020, 26(5): 2970-2987. [36] 刘怡媛, 李鹏, 肖池伟, 等. 老挝VIIRS活跃火的主要自然地理要素特征. 地理研究, 2020, 39(3): 749-760. [LIU Y Y, LI P, XIAO C W, et al.Characteristics analyses of major physical geographic elements of Visible Infrared Imaging Radiometer (VIIRS) active fire in Laos. Geographical Research, 2020, 39(3): 749-760.] |