
基于生态安全格局识别的国土空间生态修复分区——以徐州市贾汪区为例
倪庆琳, 侯湖平, 丁忠义, 李艺博, 李金融
自然资源学报 ›› 2020, Vol. 35 ›› Issue (1) : 204-216.
基于生态安全格局识别的国土空间生态修复分区——以徐州市贾汪区为例
Ecological remediation zoning of territory based on the ecological security pattern recognition: Taking Jiawang district of Xuzhou city as an example
基于2000年、2008年、2016年遥感影像、历史矿井信息以及GIS空间分析方法,应用生态安全格局研究范式:综合识别生态源地—经井田边界修正生态阻力面—应用电路理论构建生态廊道—判别生态过程障碍区,将代表生态修复需求、生态过程难易和生态要素特征的生态源地、障碍区和生态阻力面空间叠加,最终划定生态修复分区。研究结果表明:(1)三个年份生态源地面积平均约占贾汪区面积的17.77%,随着城镇化发展和矿井闭坑等因素影响呈现先降后升的趋势;生态阻力面变化规律与之相反,并逐步以城镇化发展为主导影响因子。(2)生态廊道分布明显存在整体空间相似性和各镇内部分异性,呈环形沿河流分布或位于植被覆盖较好的低山丘陵区;障碍区明显存在重叠区域,主要分布在京杭大运河以北的区域,以北部和中部较多。(3)划分了生态保育区、生态提升区、生态修复区、生态控制区四个生态修复分区,面积分别为144.38 km2、189.60 km2、182.68 km2、103.34 km2。研究结论能够为贾汪区生态转型发展和生态修复提供空间指引。
Ecological security pattern is crucial for implementing the systematic ecological remediation in the resource-exhausted city. It can assist the government in clarifying and facilitating the orientations and priorities in ecological remediation practices. An ecological remediation zoning of territory based on the ecological security is proposed. In the framework, three-phrase remote sensing images, historical mine information, and GIS spatial analysis are utilized. With the application of the paradigm of ecological pattern research, the essential elements of an ecological pattern are obtained. Ecological source areas are recognized from the perspectives of connectivity, sensitivity, and importance. The ecological resistance surface was revised based on the information of the past minefield boundary. By the application of circuit theory, ecological corridors, and other possible areas of ecological processes were identified. Based on the space superposition of the ecological-source area, barrier area, and resistance surface, the ecological remediation zones are delineated along with the consideration of the needs of ecological restoration, the difficulty of ecological processes, and the characteristics of ecological factors. A case study of Jiawang district in Xuzhou city, Jiangsu province is used to demonstrate the application of the proposed method. Results indicate that the average area of ecological sources accounts for almost 20% of the whole district in 2000, 2008 and 2016. The percentage of ecological sources rose before 2008 and fell after 2008 because of urbanization and mine closure. On the contrary, the change of the ecological resistance surface has an opposite trend due to the fact that urbanization becomes the dominant factor. In the past three phrases, the distributions of ecological corridors have an obvious spatial similarity overall, but differentiation within each town. These corridors are either along the rivers or in the low hilly area with good vegetation coverage. However, they are sparsely distributed in the central-, southern-, and southwestern parts of the region. The barrier areas are overlapping among different phrases and sitting to the northern side of the Beijing-Hangzhou Grand Canal, in which obstruction level is higher in the northern and central parts. Due to the treatment of the subsidence area after mine closure, the area of barrier began to decline. Four ecological restoration zones, namely ecological conservation zone, ecological upgrading zone, ecological restoration zone and ecological control zone, are divided into areas of 144.38 km2, 189.60 km2, 182.68 km2 and 103.34 km2, respectively. These findings can provide spatial guidance for ecological transformation and ecological remediation in Jiawang district.
生态安全格局 / 贾汪区 / 生态修复分区 / 电路理论 {{custom_keyword}} /
ecological security pattern / Jiawang district / ecological remediation zoning / circuit theory {{custom_keyword}} /
[1] 梁发超, 刘浩然, 刘诗苑, 等. 闽南沿海景观生态安全网络空间重构策略: 以厦门市集美区为例. 经济地理, 2018, 38(9): 231-239.
[LIANG F C, LIU H R, LIU S Y, et al.Spatial restructuring countermeasures of landscape ecological security network in Southern Fujian: A case study of Jimei district in Xiamen. Economic Geography, 2018, 38(9): 231-239.]
[2] 陆禹, 佘济云, 罗改改, 等. 基于粒度反推法和GIS空间分析的景观格局优化. 生态学杂志, 2018, 37(2): 534-545.
[LU Y, SHE J Y, LUO G G, et al.Landscape pattern optimization based on granularity inverse method and GIS spatial analysis. Chinese Journal of Ecology, 2018, 37(2): 534-545.]
[3] 田雅楠, 张梦晗, 许荡飞, 等. 基于“源—汇”理论的生态型市域景观生态安全格局构建. 生态学报, 2019, 39(7): 1-10.
[TIAN Y N, ZHANG M H, XU D F, et al.Landscape ecological security patterns in an ecological city based on source-sink theory. Chinese Journal of Ecology, 2019, 39(7): 1-10.]
[4] 陈昕, 彭建, 刘焱序, 等. 基于“重要性—敏感性—连通性”框架的云浮市生态安全格局构建. 地理研究, 2017, 36(3): 471-484.
[CHEN X, PENG J, LIU Y X, et al.Constructing ecological security patterns in Yunfu city based on the framework of importance-sensitivity-connectivity. Geographical Research, 2017, 36(3): 471-484.]
[5] 苏泳娴, 张虹鸥, 陈修治, 等. 佛山市高明区生态安全格局和建设用地扩展预案. 生态学报, 2013, 33(5): 1524-1534.
[SU Y X, ZHANG H O, CHEN X Z, et al.The ecological security patterns and construction land expansion simulation in Gaoming. Acta Ecologica Sinica, 2013, 33(5): 1524-1534.]
[6] 陆禹, 佘济云, 陈彩虹, 等. 基于粒度反推法的景观生态安全格局优化: 以海口市秀英区为例. 生态学报, 2015, 35(19): 6384-6393.
[LU Y, SHE J Y, CHEN C H, et al.Landscape ecological security pattern optimization based on the granularity inverse method: A case study in Xiuying district, Haikou. Acta Ecologica Sinica, 2015, 35(19): 6384-6393.]
[7] 韩宗伟, 焦胜, 胡亮, 等. 廊道与源地协调的国土空间生态安全格局构建. 自然资源学报, 2019, 34(10): 2244-2256.
[HAN Z W, JIAO S, HU L, et al.Construction of ecological security pattern based on coordination between corridors and sources in national territorial space. Journal of Natural Resources, 2019, 34(10): 2244-2256.]
[8] PENG J, ZHAO S Q, DONG J Q, et al.Applying ant colony algorithm to identify ecological security patterns in megacities. Environmental Modelling and Software, 2019, 117: 214-222.
[9] PENG J, YANG Y, LIU Y, et al.Linking ecosystem services and circuit theory to identify ecological security patterns. Science of The Total Environment, 2018, 644: 781-790.
[10] 朱军, 李益敏, 余艳红. 基于GIS的高原湖泊流域生态安全格局构建及优化研究: 以星云湖流域为例. 长江流域资源与环境, 2017, 26(8): 1237-1250.
[ZHU J, LI Y M, YU Y H. Study of construction and optimization of ecological security pattern of lake basin in plateau based on GIS: A case study of Xingyun Lake Basin. Resource and Environment in the Yangtze Basin, 2017, 26(8): 1237-1250.]
[11] 黄木易, 岳文泽, 冯少茹, 等. 基于MCR模型的大别山核心区生态安全格局异质性及优化. 自然资源学报, 2019, 34(4): 771-784.
[HUANG M Y, YUE W Z, FENG S R, et al.Analysis of spatial heterogeneity of ecological security based on MCR model and ecological pattern optimization in the Yuexi county of the Dabie Mountain Area. Journal of Natural Resources, 2019, 34(4): 771-784.]
[12] 李慧, 李丽, 吴巩胜, 等. 基于电路理论的滇金丝猴生境景观连通性分析. 生态学报, 2018, 38(6): 2221-2228.
[LI H, LI L, WU G S, et al.Analysis of the landscape-level connectivity of the Yunnan snub-nosed monkey habitat based on circuit theory. Acta Ecologica Sinica, 2018, 38(6): 2221-2228.]
[13] 宋利利, 秦明周. 整合电路理论的生态廊道及其重要性识别. 应用生态学报, 2016, 27(10): 3344-3352.
[SONG L L, QIN M Z. Identification of ecological corridors and its importance by integrating circuit theory. Chinese Journal of Applied Ecology, 2016, 27(10): 3344-3352.]
[14] REY F, BIFULCO C, BISCHETTI G, et al.Soil and water bioengineering: Practice and research needs for reconciling natural hazard control and ecological restoration. Science of The Total Environment, 2019, 684: 1210-1218.
[15] 王维, 贾文涛. 生态文明理念下的国土综合整治与生态保护修复. 中国土地, 2019, (5): 29-31.
[WANG W, JIA W T. Comprehensive land management and ecological protection and restoration under the concept of ecological civilization. China Land, 2019, (5): 29-31.]
[16] JELLINEK S, WILSON K A, HAGGER V, et al.Integrating diverse social and ecological motivations to achieve landscape restoration. Journal of Applied Ecology, 2019, 56(1): 246-252.
[17] 卞正富, 雷少刚, 金丹, 等. 矿区土地修复的几个基本问题. 煤炭学报, 2018, 43(1): 190-197.
[BIAN Z F, LEI S G, JIN D, et al.Several basic scientific issues related to mined land remediation. Journal of China Coal Society, 2018, 43(1): 190-197.]
[18] 邹长新, 王燕, 王文林, 等. 山水林田湖草系统原理与生态保护修复研究. 生态与农村环境学报, 2018, 34(11): 961-967.
[ZOU C X, WANG Y, WANG W L, et al.Theory of mountain-river-forest-farmland-lake-grass system and ecological protection and restoration research. Journal of Ecology and Rural Environment, 2018, 34(11): 961-967.]
[19] 周升强, 赵凯. 草地退化生态修复工程实施绩效评价: 基于异质性农牧民满意度的新视角. 干旱区资源与环境, 2019, 33(9): 43-49.
[ZHOU S Q, ZHAO K. Evaluation on the effect of grassland degradation ecological restoration project: A new perspective of heterogeneous farmers and herdmen's satisfaction. Journal of Arid Land Resources and Environment, 2019, 33(9): 43-49.]
[20] 陈玉碧, 黄锦楼, 徐华清, 等. 内蒙古半干旱生态脆弱矿区生态修复耦合机理与产业模式. 生态学报, 2014, 34(1): 149-153.
[CHEN Y B, HUANG J L, XU H Q, et al.The coupling mechanism and industrialization mode of ecological restoration in the weak semi arid mining area of Inner Mongolia. Acta Ecologica Sinica, 2014, 34(1): 149-153.]
[21] WANG J Y, LIU Y J, LI Y R. Ecological restoration under rural restructuring: A case study of Yan'an in China's Loess Plateau. Land Use Policy, 2019, 87: 1-9.
[22] 闫美芳, 王璐, 郝存忠, 等. 煤矿废弃地生态修复的土壤有机碳效应. 生态学报, 2019, 39(5): 1838-1845.
[YAN M F, WANG L, HAO C Z, et al.Effects of ecological restoration on soil organic carbon in post-mining lands. Acta Ecologica Sinica, 2019, 39(5): 1838-1845.]
[23] 刘俊国, 赵丹丹, 叶斌. 雄安新区白洋淀生态属性辨析及生态修复保护研究. 生态学报, 2019, 39(9): 3019-3025.
[LIU J G, ZHAO D D, YE B. Ecological attributes, restoration, and protection of the Baiyangdian in Xiong'an New Area. Acta Ecologica Sinica, 2019, 39(9): 3019-3025.]
[24] NAGEL R, DURKA W, BOSSDORF O, et al.Rapid evolution in native plants cultivated for ecological restoration: Not a general pattern. Plant Biology, 2018, 21(3): 551-558.
[25] 刘佳, 尹海伟, 孔繁花, 等. 基于电路理论的南京城市绿色基础设施格局优化. 生态学报, 2018, 38(12): 4363-4372.
[LIU J, YIN H W, KONG F H, et al.Structure optimization of circuit theory-based green infrastructure in Nanjing, China. Acta Ecologica Sinica, 2018, 38(12): 4363-4372.]
[26] 曹世雄, 刘伟, 赵麦换, 等. 延安市生态修复双赢模式实证研究. 生态学报, 2018, 38(22): 7879-7885.
[CAO S X, LIU W, ZHAO M H, et al.Test of a win-win path for ecological restoration in Yan'an city, China. Acta Ecologica Sinica, 2018, 38(22): 7879-7885.]
[27] TÖRÖK K, HORVÁTH F, KÖVENDI-JAKÓ A, et al. Meeting Aichi Target 15: Efforts and further needs of ecological restoration in Hungary. Biological Conservation, 2019, 235: 128-135.
[28] SYLVAIN Z A, BRANSON D H, RAND T A, et al.Decoupled recovery of ecological communities after reclamation. Peerj, 2019, 7: e7038, Doi:10.7717/peerj.7038.
[29] 杨艳平, 罗福周, 王博俊. 基于朴门设计的煤矿废弃地生态修复规划研究. 自然资源学报, 2018, 33(6): 1080-1091.
[YANG Y P, LUO F Z, WANG B J. Research on ecological restoration planning of coal mine wasteland based on permaculture design. Journal of Natural Resources, 2018, 33(6): 1080-1091.]
[30] 蒙吉军, 王雅, 王晓东, 等. 基于最小累积阻力模型的贵阳市景观生态安全格局构建. 长江流域资源与环境, 2016, 25(7): 1052-1061.
[MENG J J, WANG Y, WANG X D, et al.Construction of landscape ecological security pattern in Guiyang based on MCR model. Resource and Environment in the Yangtze Basin, 2016, 25(7): 1052-1061.]
[31] 李佳洺, 余建辉, 张文忠. 中国采煤沉陷区空间格局与治理模式. 自然资源学报, 2019, 34(4): 867-880.
[LI J M, YU J H, ZHANG W Z. Spatial distribution and governance of coal-mine subsidence in China. Journal of Natural Resources, 2019, 34(4): 867-880.]
[32] 李保杰, 顾和和, 纪亚洲. 复垦矿区生态系统服务价值空间分异研究: 以徐州市贾汪矿区为例. 中国矿业大学学报, 2014, 43(4): 750-756.
[LI B J, GU H H, JI Y Z. Spatial heterogeneity of ecosystem service value of reclaimed land in mining area: A case study of Jiawang mining area in Xuzhou city. Journal of China University of Mining and Technology, 2014, 43(4): 750-756.]
[33] 廖程浩, 刘雪华. 阳泉煤炭开采对区域植被影响范围的3S识别. 自然资源学报, 2010, 25(2): 185-191.
[LIAO C H, LIU X H. Identifying the mining impact range on the vegetation of Yangquan Coal Mining Region by using 3S technology. Journal of Natural Resources, 2010, 25(2): 85-191.]
[34] 中华人民共和国住房和城乡建设部. 煤矿区采空区岩土工程勘察规范 GB 51044-2014.
[Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for geotechnical engineering investigation in mined-out area GB 51044-2014.]
[35] HELI S, RISTO V, VILLE S, et al.Woodland key habitats and stream biodiversity: Does small-scale terrestrial conservation enhance the protection of stream biota?. Biological Conservation, 2014, 170: 10-19.
[36] MCRAE B, HALL S, BEIER P, et al.Where to restore ecological connectivity?: Detecting barriers and quantifying restoration benefits. PLoS One, 2012, 7(12): e52604, Doi:10.1371/journal.pone.0052604.
[37] 田美荣, 高吉喜, 宋国宝, 等. 基于主导生态功能与生态退化程度的生态修复分区研究. 生态与农村环境学报, 2017, 33(1): 7-14.
[TIAN M R, GAO J X, SONG G B, et al.Zoning for ecological remediation by dominant ecological function and ecological degradation degree. Journal of Ecology and Rural Environment, 2017, 33(1): 7-14.]
[38] 彭建, 李慧蕾, 刘焱序, 等. 雄安新区生态安全格局识别与优化策略. 地理学报, 2018, 73(4): 701-710.
[PENG J, LI H L, LIU Y X, et al.Identification and optimization of ecological security pattern in Xiong'an New Area. Acta Geographica Sinica, 2018, 73(4): 701-710.]
国家自然科学基金项目(51874307); 江苏省资源环境信息工程重点实验室开放基金项目(JS201901); 中央高校基本科研业务费专项资金(2017XKQY071)
/
〈 |
|
〉 |