自然资源学报 ›› 2013, Vol. 28 ›› Issue (3): 426-436.doi: 10.11849/zrzyxb.2013.03.008
范泽孟1, 李婧1,2, 岳天祥1
收稿日期:
2012-04-19
修回日期:
2012-09-12
出版日期:
2013-03-20
发布日期:
2013-03-20
作者简介:
范泽孟(1977-),男,云南镇雄人,副研究员,硕士生导师,研究方向为气候变化与生态系统响应、生态模型与系统模拟。E-mail:fanzm@lreis.ac.cn
基金资助:
国家自然科学基金项目(41271406);国家杰出青年科学基金(40825003);国家重点基础研究发展计划(973计划)(2009CB421105,2010CB950904);资源与环境信息系统国家重点实验室青年人才培养基金项目。
FAN Ze-meng1, LI Jing1,2, YUE Tian-xiang1
Received:
2012-04-19
Revised:
2012-09-12
Online:
2013-03-20
Published:
2013-03-20
摘要:
在全球气候变化及其生态环境效应研究中,生态系统过渡带作为气候变化和人类活动的敏感区域,其土地覆盖的时空变化分析逐渐成为土地利用科学研究的热点问题。基于GIS的时空分析方法,在对Holdridge生命地带模型的判别标准进行改进的基础上,构建了生态系统过渡带的时空分析模型。在建立土地覆盖正向和逆向转换规则的基础上,构建了土地覆盖正向和逆向转换指数模型。并以黄土高原为案例区,在定量识别生态系统过渡带类型及其空间格局的基础上,定量评价了各种生态系统过渡带类型土地覆盖的转换情况。模拟分析结果表明,黄土高原地区共有14种生态系统过渡带类型,其总面积占整个黄土高原的25.21%。在1985-2005年期间,黄土高原生态系统过渡带内的耕地面积平均每10 a减少0.93%,而湿地和水体、林地、草地的面积则平均每10 a分别增加3.47%、0.24%、0.06%。整个过渡带区域土地覆盖的转换率从28.53%降低到21.91%,且其正向转换和逆向转换面积总体上均呈减少的趋势。另外,黄土高原生态系统过渡带区域和非过渡带区域的土地覆盖转换率对比分析显示,过渡带区域土地覆盖的转换率高于非过渡带区域。
中图分类号:
范泽孟, 李婧, 岳天祥. 黄土高原生态系统过渡带土地覆盖的时空变化分析[J]. 自然资源学报, 2013, 28(3): 426-436.
FAN Ze-meng, LI Jing, YUE Tian-xiang. Spatial-temporal Change of Land-Cover in Ecosystem Transitional Zones on the Loess Plateau of China[J]. JOURNAL OF NATURAL RESOURCES, 2013, 28(3): 426-436.
[1] Kalnay E, Cai M. Impact of urbanization and land-use change on climate [J]. Nature, 2003, 423: 528-531.[2] Rounsevell M D A, Reay D S. Land use and climate change in the UK [J]. Land Use Policy, 2009, 26s: s160-s169.[3] Turner II B L, Lambin E F, Reenberg A. The emergence of land change science for global environmental change and sustainability [J]. PNAS, 2007, 104(52): 20666-20671.[4] Chapin II I F S, Zavaleta E S, Eviner V T, et al. Consequences of changing biodiversity [J]. Nature, 2000, 405: 234-242.[5] Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of earth’s ecosystems [J]. Science, 1997, 277: 494-499.[6] Yue T X, Fan Z M, Liu J Y. Scenarios of land cover in China [J]. Global Planetary Change, 2007, 55: 317-342.[7] Solomon A M. Transient response of forests to CO2 induced climate change: Simulation modeling experiments in eastern North America [J].Oecologia, 1986, 68:567-579.[8] Di Castri F, Hansen A J, Holland M M.A New Look at Ecotones [M].Biology International, Special Issue 17.Paris: International Union of Biological Sciences, 1988.[9] Belotelov N V, Bogatyrev B G, Kirilenko A P, et al. Modelling of time-dependent biomes shifts under global climate changes [J]. Ecological Modelling, 1996, 87:29-40.[10] Whittaker R H. Evolution and measurement of species diversity [J]. Taxon, 1972, 21:213-251.[11] Hochstrasser T, Kröel-Dulay G y, Peters D P C, et al. Vegetation and climate characteristics of arid and semi-arid grasslands in North America and their biome transition zone [J]. Journal of Arid Environments, 2002, 51:55-78.[12] Holdridge L R. Determination of world plant formations from simple climate data [J]. Science, 1947, 105(2727):367-368.[13] Holdridge L R. Life Zone Ecology [M]. Costa Rica: Tropical Science Center in San Jose, 1967.[14] Holdridge L R, Grenke W C, Hatheway W H, et al. Forest Environments in Tropical Life Zones [M]. Oxford: Pergamon Press, 1971.[15] Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones [J]. Nature, 1982, 298:156-159.[16] Smith T M, Shugart H H, Bonan G B, et al. Modeling the potential response of vegetation to global climate change [J]. Advances in Ecological Research, 1992, 22:93-113.[17] Bestelmeyer B T, Wiens J A. Local and regional-scale responses of ant diversity to a semiarid biome transition zone [J]. Ecography, 2001, 24:381-392.[18] Dixon R K, Smith J B, Brown S, et al. Simulations of forest system response and feedbacks to global change: Experiences and results from the U. S. country studies program [J]. Ecological Modelling, 1999, 122:289-305.[19] Powell G V N, Barborak J, Rodriguez M. Assessing representativeness of the protected natural areas in Costa Rica for conserving biodiversity: A preliminary gap analysis [J]. Biological Conservation, 2000, 93:35-41.[20] Peng C H. From static biogeographical model to dynamic global vegetation model: A global perspective on modeling vegetation dynamics [J]. Ecological Modelling, 2000, 135, 33-54[21] Chen X W, Zhang X S, Li B L. Influence of Tibetan Plateau on vegetation distributions in East Asia: A modeling perspective [J]. Ecological Modelling, 2005, 181:79-86.[22] Chen X W, Zhang X S, Li B L. The possible response of life zones in China under global climate change [J]. Global and Planetary Change, 2003, 38:327-337.[23] Yue T X, Fan Z M, Chen C F, et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios [J]. Ecological Modelling, 2011, 222:2342-2361.[24] Yue T X, Fan Z M, Liu J Y. Changes of major terrestrial ecosystems in China since 1960 [J]. Global Planet Change, 2005, 48: 287-302.[25] Yue T X, Liu J Y, Jørgensen S E, et al. Changes of HLZ diversity in all of China over half a century [J]. Ecological Modelling, 2001, 144:153-162.[26] 范泽孟, 岳天祥, 田永中. 中国Holdridge生命地带平均中心的时空分布及其偏移趋势[J]. 生态学报, 2004, 24(7):1380-1387.[FAN Ze-meng, YUE Tian-xiang, TIAN Yong-zhong. Temporal and spatial distribution and movement tendency of meancenter of the Holdridge life zones in China. Acta Ecologica Sinica, 2004, 24(7):1380-1387.][27] 范泽孟, 岳天祥. 中国Holdridge 生命地带及其多样性的时空变化分析[J]. 地理研究, 2005, 24(1):121-129.[FAN Ze-meng, YUE Tian-xiang. Temporal and spatial changes pattern of Holdridge life zones and diversity in China. Geographical Research, 2005, 24(1):121-129.][28] 范泽孟. 资源环境模型库系统设计与应用——以中国陆地生态系统时空变化趋势及情景分析为例. 北京:中国科学院地理科学与资源研究所, 2005.[FAN Ze-meng. Design and application of Resources and Environment Model-Base System: Spatial Trend and Scenarios Modeling of Terrestrial Ecosystems in China. Beijing: Institute of Geographical and Natural Resources Research, CAS, 2005.][29] Yue T X. Surface Modeling: High Accuracy and High Speed Methods [M]. New York: CRC Press, Talyor & Francis Group, 2010.[30] Tateno R, Tokuchi N, Yamanaka N, et al. Comparison of litter fall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan'an on the Loess Plateau, China [J]. Forest Ecology and Management, 2007, 241(1/3):84-90.[31] Shi W Y, Tateno R, Zhang J G, et al. Response of soil respiration to precipitation during the dry season in two typical forest stands in the forest-grassland transition zone of the Loess Plateau [J]. Agricultural and Forest Meteorology, 2011, 151:854863.[32] Liu G B. Soil conservation and sustainable agricultural on the Loess Plateau: Challenge and prospective [J]. AMBIO, 1999, 28(8): 663-668.[33] Fu B J, Meng Q H, Qiu Y, et al. Effect of land use on soil erosion and nitrogen loss in the hilly area of the Loess Plateau, China [J]. Land Degradation & Development, 2004, 15:87-96.[34] Liu Y, Fu B J, Lü Y H, et al. Hydrological responses and soil erosion potential of abandoned cropland in the Loess Plateau, China [J]. Geomorphology, 2012, 138:404-414.[35] Qiu L P, Zhang X C, Cheng J M, et al. Effects of 22 years of revegetation on soil quality in the semi-arid area of the Loess Plateau [J]. African Journal of Biotechnology, 2009, 8:6896-6907.[36] Li Y Y, Shao M A. Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China [J]. Journal of Arid Environment, 2006, 64:77-96.[37] Liu J Y, Zhuang D F, Luo D, et al. Land cover classification of China: Integrated analysis of AVHRR imagery and geophysical data [J]. International Journal of Remote Sensing, 2003, 24(12):2485-2500.[38] 刘纪远, 张增祥, 徐新良, 等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J]. 地理学报, 2009, 64(12):1411-1420.[LIU Ji-yuan, ZHANG Zeng-xiang, XU Xin-liang, et al. Spatial patterns and driving forces of land use change in China in the early 21st century. Acta Geographic Sinica, 2009, 64(12):1411-1420.] |
[1] | 杨静涵, 刘梦云, 张杰, 张萌萌, 曹润珊, 曹馨悦. 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素[J]. 自然资源学报, 2020, 35(3): 743-754. |
[2] | 陈卓鑫, 王文龙, 郭明明, 王天超, 郭文召, 王文鑫, 康宏亮, 杨波, 赵满. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响[J]. 自然资源学报, 2020, 35(2): 387-398. |
[3] | 张文强, 孙从建, 李新功. 晋西南黄土高原区植被覆盖度变化及其生态效应评估[J]. 自然资源学报, 2019, 34(8): 1748-1758. |
[4] | 亢小语, 张志强, 陈立欣, 冷曼曼, 杨锋伟. 黄土高原中尺度流域基流变化驱动因素分析[J]. 自然资源学报, 2019, 34(3): 563-572. |
[5] | 张钦弟, 卫伟, 陈利顶, 杨磊. 黄土高原草地土壤水分和物种多样性沿降水梯度的分布格局[J]. 自然资源学报, 2018, 33(8): 1351-1362. |
[6] | 任婧宇, 彭守璋, 曹扬, 霍晓英, 陈云明. 1901—2014年黄土高原区域气候变化时空分布特征[J]. 自然资源学报, 2018, 33(4): 621-633. |
[7] | 赵安周, 张安兵, 刘海新, 刘焱序, 王贺封, 王冬利. 退耕还林(草)工程实施前后黄土高原植被覆盖时空变化分析[J]. 自然资源学报, 2017, 32(3): 449-460. |
[8] | 邱甜甜, 刘国彬, 王国梁, 孙利鹏, 姚旭. 人工油松林不同生长阶段深层土壤有机碳和活性碳的差异及其影响因素[J]. 自然资源学报, 2016, 31(8): 1399-1409. |
[9] | 曾全超, 李鑫, 董扬红, 安韶山. 黄土高原延河流域不同植被类型下土壤生态化学计量学特征[J]. 自然资源学报, 2016, 31(11): 1881-1891. |
[10] | 郭正, 李军, 张玉娇, 曹裕, 张丽娜, 范鹏. 黄土高原不同降水量区旱作苹果园地水分生产力和土壤干燥化效应模拟与比较[J]. 自然资源学报, 2016, 31(1): 135-150. |
[11] | 曾全超, 李鑫, 董扬红, 李娅芸, 程曼, 安韶山. 陕北黄土高原土壤性质及其生态化学计量的纬度变化特征[J]. 自然资源学报, 2015, 30(5): 870-879. |
[12] | 乔艳琴, 樊军, 高宇, 王胜, 易彩琼. 黄土高原水蚀风蚀交错区植被间土壤水分竞争[J]. 自然资源学报, 2014, 29(5): 801-809. |
[13] | 孙文义, 邵全琴, 刘纪远. 黄土高原不同生态系统水土保持服务功能评价[J]. 自然资源学报, 2014, 29(3): 365-376. |
[14] | 郭慧敏, 张彦军, 刘庆芳, 姜继韶, 李俊超, 王蕊, 李娜娜, 李如剑, 郭胜利, 李春越. 黄土高原半干旱区土壤呼吸对土地利用变化的响应[J]. 自然资源学报, 2014, 29(10): 1686-1695. |
[15] | 李志, 赵西宁. 1961—2009年黄土高原气象要素的时空变化分析[J]. 自然资源学报, 2013, 28(2): 287-299. |
|