
基于Copulas函数的多维干旱变量联合分布
Multivariate Joint Distributions of Drought Variables Based on Copulas Function
通过构建多变量联合分布进行干旱分析,可揭示干旱的演变规律.根据新疆乌鲁木齐和石河子气象站的长系列月降水资料,提取干旱历时、干旱烈度和烈度峰值3个干旱特征变量,基于4种对称的Archimedean Copulas函数分别构建二维、三维干旱变量的联合分布;基于5种非对称的Archimedean Copulas函数构建三维干旱变量的联合分布,以进一步推求各自的重现期.经拟合优度检验,Frank Copula 函数对干旱历时和干旱烈度、干旱历时和烈度峰值的二维联合分布的拟合度最好;Clayton Copula 函数对于干旱烈度和烈度峰值的二维联合分布以及干旱历时、干旱烈度和烈度峰值的三维联合分布拟合效果最佳.单变量的重现期介于二维、三维变量联合重现期与同现重现期之间.表明Copulas函数能描述多维干旱特征变量的联合分布.
Drought analysis through multivariate joint distributions can determine the evolution rules of drought. Three drought variables, i.e., drought duration, drought severity and drought peak, were selected from long sequence of monthly rainfall data for Urumqi and Shihezi weather stations in Xinjiang, China. Two-dimension and three-dimension joint distributions of drought variables were analyzed based on four kinds of symmetric Archimedean Copulas functions. And three-dimension joint distributions of drought variables were analyzed using five kinds of asymmetric Archimedean Copulas functions. Furthermore their return periods were determined. Test of goodness of fit showed that, Frank Copula function was the best when it was applied to two-dimension joint distribution for drought duration-drought severity, and drought duration-drought peak.Clayton Copula function was the best when it was applied to two-dimension joint distributions of drought severity-drought peak and three-dimension joint distribution of the three drought variables. The return period of single variable ranged between return periods of the two-dimension, three-dimension and co-occurrence. This study showed that Copulas function can describe multivariate joint distributions of drought variables well.
水文学及水资源 / 联合分布 / Copulas 函数 / 重现期 / 拟合优度 {{custom_keyword}} /
hydrology and water resources / joint distribution / Copulas function / return period / goodness of fit {{custom_keyword}} /
[1] 谢华, 黄介生. 两变量水文频率分布模型研究述评[J]. 水科学进展, 2008, 19(3): 443-452.[XIE Hua, HUANG Jie-sheng. A review of bivariate hydrological frequency distribution. Advances in Water Science,2008, 19(3): 443-452.]
[2] 郭生练, 闫宝伟, 肖义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008, 28(3): 1-7. [GUO Sheng-lian, YAN Bao-wei, XIAO Yi, et al. Multivariate hydrological analysis and estimation. Journal of China Hydrology, 2008, 28(3): 1-7.]
[3] 刘曾美, 陈子燊. 区间暴雨和外江洪水位遭遇组合的风险[J]. 水科学进展, 2009, 20(5): 619-625. [LIU Zeng-mei, CHEN Zi-shen. Risk study of the bivariate encounter of interzone rainstorm and flood level of the outer river. Advances in Water Science, 2009, 20(5): 619-625.]
[4] 闫宝伟, 郭生练, 陈璐, 等. 长江和清江洪水遭遇风险分析[J]. 水利学报, 2010, 41(5): 553-559. [YAN Bao-wei, GUO Sheng-lian, CHEN Lu, et al. Flood encountering risk analysis for the Yangtze River and Qingjiang River. Journal of Hydraulic Engineering, 2010, 41(5): 553-559.]
[5] 张涛, 赵春伟, 雒文生. 基于Copula函数的洪水过程随机模拟[J]. 武汉大学学报: 工学版, 2008, 41(4): 1-4. [ZHANG Tao, ZHAO Chun-wei, LUO Wen-sheng. Random simulation of flood hydrographs based on Copula function. Engineering Journal of Wuhan University, 2008, 41(4): 1-4.]
[6] 肖义, 郭生练, 刘攀, 等. 分期设计洪水频率与防洪标准关系研究[J].水科学进展,2008, 19(1): 54-60. [XIAO Yi, GUO Sheng-lian, LIU Pan, et al. Seasonal flood frequency analysis and flood prevention standard. Advances in Water Science, 2008, 19(1): 54-60.]
[7] 陆桂华, 闫桂霞, 吴志勇, 等. 基于Copula函数的区域干旱分析方法[J]. 水科学进展,2010,21(2):188-193. [LU Gui-hua, YAN Gui-xia, WU Zhi-yong, et al. Regional drought analysis approach based on Copula function. Advances in Water Science, 2010, 21(2): 188-193.]
[8] 方彬, 郭生练, 肖义, 等. 年最大洪水两变量联合分布研究[J]. 水科学进展, 2008, 19(4): 505-511. [FANG Bin, GUO Sheng-lian, XIAO Yi, et al. Annual maximum flood occurrence dates and magnitudes frequency analysis based on bivariate joint distribution. Advances in Water Science,2008, 19(4): 505-511.]
[9] 张雨, 宋松柏. Copulas函数在多变量干旱联合分布中的应用[J]. 灌溉排水学报, 2010, 29(3): 64-68. [ZHANG Yu, SONG Song-bai. Application of archimedean copulas in multi-variable drought distribution. Journal of Irrigation and Drainage, 2010, 29(3): 64-68.]
[10] Shiau J T. Return period of bivariate distributed hydrological events [J]. Stochastic Environmental Research and Risk Assessment, 2003, 17(1/2): 42-57.
[11] Shiau J T. Fitting drought duration and severity with two-dimensional Copulas [J]. Water Resources Management, 2006, 20(5): 795-815.
[12] Genest C, Favre A C. Everything you always wanted to know about copula modeling but were afraid to ask [J]. Journal of Hydrologic Engineering, 2007, 12(4): 347-367.
[13] SONG S B, Vijay P Singh. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm [J]. Stochastic Environmental Research and Risk Assessment,2010, doi:10.1007/s00477-0101-0364-5.
[14] SONG S B, Vijay P Singh. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data [J]. Stochastic Environmental Research and Risk Assessment, 2009, doi: 10. 1007/s00477-009-0331-1.
[15] ZHANG L, Vijay P S. Gumbel-Hougaard copula for trivariate rainfall frequency analysis [J]. Journal of Hydrologic Engineering, 2007, 12(4): 409-419.
[16] ZHANG L, Vijay P S. Trivariate flood frequency analysis using the Gumbel-Hougaard copula [J]. Journal of Hydrologic Engineering, 2007: 431-439.
[17] 宋松柏, 康艳, 荆萍. 水文频率曲线参数优化估计研究[J]. 西北农林科技大学学报: 自然科学版, 2008, 36(4): 193-198. [SONG Song-bai, KANG Yan, JING Ping. Parameter optimum estimation for hydrological frequency curve. Journal of Northwest A & F University: Natural Science Edition, 2008, 36(4): 193-198.]
[18] 易丹辉. 非参数统计——方法与应用[M]. 北京: 中国统计出版社, 1996. [YI Dan-hui. Non-parameter Statistics—Methods and Application. Beijing: China Statistics Press, 1996.]
[19] 陈秀平, 郑海鹰. Copula函数在本科课程设置中的应用[J]. 统计与决策, 2009(9): 149-150. [CHEN Xiu-ping, ZHENG Hai-ying. Copula function application in undergraduate course. Statistics and Decision, 2009(9): 149-150.]
[20] 肖义, 郭生练, 刘攀, 等. 基于Copula函数的设计洪水过程线方法[J]. 武汉大学学报: 工学版, 2007, 40(4): 13-17.[XIAO Yi, GUO Sheng-lian, LIU Pan, et al. Derivation of design flood hydrograph based on Copula function. Engineering Journal of Wuhan University, 2007, 40(4): 13-17.]
[21] ZHANG L. Multivariate Hydrological Frequency Analysis and Risk Mapping . Louisiana State University, USA, 2005: 374-375.
[22] Shiau J T, SHEN H-w. Recurrence analysis of hydrologic droughts of differing severity [J]. Journal of Water Resources Planning and Management—ASCE,2007, 127(1): 30-40.
国家自然科学基金新疆联合基金(U1203182);陕西省国际科技合作重点项目(2012KW-24-01).
/
〈 |
|
〉 |