华西雨屏区不同密度巨桉人工林土壤呼吸特征

向元彬, 胡庭兴, 张健, 涂利华, 李仁洪, 雒守华, 黄立华, 戴洪忠

自然资源学报 ›› 2011, Vol. 26 ›› Issue (1) : 79-88.

PDF(902 KB)
PDF(902 KB)
自然资源学报 ›› 2011, Vol. 26 ›› Issue (1) : 79-88. DOI: 10.11849/zrzyxb.2011.01.008
资源生态

华西雨屏区不同密度巨桉人工林土壤呼吸特征

  • 向元彬1, 胡庭兴1, 张健1, 涂利华1, 李仁洪1,2, 雒守华1, 黄立华1, 戴洪忠1
作者信息 +

Study on Soil Respiration in Eucalyptus grandis Plantations with Different Densities in Rainy Area of Western China

  • XIANG Yuan-bing1, HU Ting-xing1, ZHANG Jian1, TU Li-hua1, LI Ren-hong1,2, LUO Shou-hua1, HUANG Li-hua1, DAI Hong-zhong1
Author information +
文章历史 +

摘要

从2008-03至2009-02,采用闭合动态法(LI-6400-09)对华西雨屏区不同密度中龄巨桉人工林土壤呼吸进行了研究。结果表明:①该林分土壤呼吸具有明显的季节动态,各密度林分土壤呼吸速率最高值均出现在7月份,最低出现在1月,且密度为883株·hm-2(1.5 m×8 m)的巨桉林土壤呼吸速率最大,2 222株·hm-2(1.5 m×3 m)的最小;②2008年4、7、10月土壤呼吸速率24 h平均值均表现为883株·hm-2> 1 333株·hm-2> 2 222株·hm-2,且7月>4月>10月;③土壤微生物生物量碳氮、土壤有机质含量和10 cm根系生物量都表现出相同的趋势,即林分密度越小,土壤微生物生物量碳氮越高,草本植物越多,根系生物量越大,有机质含量越多;④温度是巨桉林土壤呼吸变异的主导因子,土壤呼吸速率与土壤温度和湿度的双因素模型优于单因素模型,两者共同解释了土壤呼吸速率月动态的78.3%~91.5%;⑤各密度林分土壤呼吸Q10值随巨桉林分密度增大而降低,大小顺序为3.65(883株·hm-2)>2.60(1 333株·hm-2)>2.55(2 222株·hm-2)。

Abstract

From Mar. 2008 to Feb. 2009, soil respiration was measured by infrared gas analyzers (LI-6400-09) of Eucalyptus grandis plantations with different stand densities in Rainy Area of Western China. The results were given as follows: Soil respiration in every stand with different densities exhibited a clear seasonal pattern, with the highest rate in July and the lowest in January, and the stand with the density of 883 plants per hectare had higher soil respiration rate (Rs), while the density with 2222 plants per hectare had lower soil respiration rate. The average respiration rate of 24-hour variation of soil respiration in April, July and October 2008 exhibited Rs(883)>Rs(1333)>Rs(2222), and Rs(July)>Rs(April)>Rs (October). The soil microbial biomass carbon and nitrogen, soil organic matter content and root biomass in 10 cm soil layer showed the same trend, the smaller the densities, the more their contents. Temperature was the main control factor of soil respiration variation. The two-factor model of soil temperature and moisture was better than the single-factor models, and it could explain 78.3%-91. 5% monthly variation of soil respiration. For the Q10 values of stands with different densities, the order was 3.65(833)>2.60(1333)>2.55(2222), implied the trend that the Q10 values decreased with the enhancement of stand density.

关键词

巨桉人工林 / 土壤呼吸 / Q10 / 华西雨屏区

Key words

Eucalyptus grandis plantation / soil respiration / Q10 value / rainy area of western China

引用本文

导出引用
向元彬, 胡庭兴, 张健, 涂利华, 李仁洪, 雒守华, 黄立华, 戴洪忠. 华西雨屏区不同密度巨桉人工林土壤呼吸特征[J]. 自然资源学报, 2011, 26(1): 79-88 https://doi.org/10.11849/zrzyxb.2011.01.008
XIANG Yuan-bing, HU Ting-xing, ZHANG Jian, TU Li-hua, LI Ren-hong, LUO Shou-hua, HUANG Li-hua, DAI Hong-zhong. Study on Soil Respiration in Eucalyptus grandis Plantations with Different Densities in Rainy Area of Western China[J]. JOURNAL OF NATURAL RESOURCES, 2011, 26(1): 79-88 https://doi.org/10.11849/zrzyxb.2011.01.008
中图分类号: S714.2   

参考文献

[1] Post W P, Pastor J, Zinke P J, et al. Global patterns of soil nitrogen storage [J]. Nature, 1985, 317: 613-616. [2] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record [J]. Nature, 2010, 464: 579-583. [3] Raich J W, Tufekciogul A. Vegetation and soil respiration: Correlations and controls [J]. Biogeochemistry, 2000, 48: 71-90. [4] 黄湘, 李卫红, 陈亚宁, 等. 木河下游荒漠河岸林群落土壤呼吸及其影响因子[J]. 生态学报, 2007, 27(5): 1951-1959. [5] 韩广轩, 周广胜. 土壤呼吸作用时空动态变化及其影响机制研究与展望[J]. 植物生态学报, 2009, 33(1): 197-205. [6] 李裕元, 邵明安, 郑纪勇, 等. 黄土高原北部草地的恢复与重建对土壤有机碳的影响[J]. 生态学报, 2007, 27(6): 2279-2287. [7] 徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响[J]. 植物生态学报, 2007, 31(2): 175-188. [8] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 449: 165-173. [9] Noormets A, Desai A R, Cook B D, et al. Moisture sensitivity of ecosystem respiration: Comparison of 14 forest ecosystems in the Upper Great Lakes Region, USA [J]. Agricultural And Forest Meteorology, 2008, 148: 216-230. [10] Raich J W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus, 1992, 44B: 81-99. [11] 杨玉盛, 陈光水, 王小国, 等. 中国亚热带森林转换对土壤呼吸动态及通量的影响[J]. 生态学报, 2005, 25(7): 1684-1690. [12] Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure [J]. Soil Biology Biochemistry, 1990, 22(8): 1167-1169. [13] Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soil [M]//Advances in Nitrogen Cycling in Agricultural Ecosystems. C. A. B. International, Wallingford, 1988: 368-386. [14] Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods [J]. Soil Biology and Biochemistry, 2006, 38: 425-448. [15] 刘建军, 王得祥, 雷瑞德, 等. 秦岭天然林油松、锐齿栎林地上土壤呼吸与释放[J]. 林业科学, 2003, 39(2): 8-13. [16] Lee K-H, Jose S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient [J]. Forest Ecology Management, 2003, 185: 263-273. [17] Davidson E A, Ishida F Y, Nepstad D C. Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest [J]. Global Change Biology, 2004, 10: 718-730. [18] Sikora L J, McCoy J L. Attempts to determine available carbon in soils [J]. Biology and Fertility of Soils, 1990, 9: 19-24. [19] 王凤文, 杨书运, 徐小牛, 等. 亚热带3种森林植被类型土壤的呼吸特征[J]. 贵州农业科学, 2009, 37(3): 82-84. [20] 赵景波, 袁道先. 西安地区4—5月份土壤CO2释放规律研究[J]. 中国岩溶, 2000, 19(4): 309-313. [21] Bazzaz F A, Williams W E. Atmospheric CO2 concentrations within a mixed forest: Implications for seedling growth [J]. Ecology, 1991, 72(1): 12-16. [22] 张东秋, 石培礼, 张宪洲. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 2005, 20(7): 778-785. [23] Qi Y, Xu M. Separating the effects of moisture and temperature on soil CO2 efflux in a coniferous forest in the Sierra Nevada Mountains [J]. Plant Soil, 2001, 237: 15-23. [24] Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10 [J]. Global Change Biology, 2006, 12: 154-164. [25] Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440: 165-173. [26] Elberling B, Brandt K K. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of Arctic C cycling [J]. Soil Biology & Biochemistry, 2003, 35: 263-272. [27] Takahashi A, Hiyama T, Takahashi H A, et al. Analytical estination of the vertical distribution of CO2 production within soil application to a Japanese temperate forest [J]. Agricultural and Forest Meteorology, 2004, 126: 223-235. [28] 陈宝玉, 刘世荣, 葛剑平, 等. 川西亚高山针叶林土壤呼吸速率与不同土层温度的关系[J]. 应用生态学报, 2007, 18(6): 1219-1224. [29] 王小国, 朱波, 王艳强, 等. 不同土地利用方式下土壤呼吸及其温度敏感性[J]. 应用生态学报, 2007, 27(5): 1960-1968. [30] 冯文婷, 邹晓明, 沙丽清, 等. 哀牢山中山湿性常绿阔叶林土壤呼吸季节和昼夜变化特征及影响因子比较[J]. 植物生态学报, 2008, 32(1): 31-39. [31] 刘绍辉, 方精云, 清田信. 北京山地温带森林的土壤呼吸[J]. 植物生态学报, 1998, 22(2): 119-126. [32] 宋学贵, 胡庭兴, 鲜骏仁, 等. 川西常绿阔叶林土壤呼吸及其对氮沉降的响应[J]. 水土保持学报, 2007, 1(4): 168-192. [33] 易志刚, 蚁伟民, 周国逸, 等. 鼎湖山三种主要植被类型土壤碳释放研究[J]. 生态学报, 2003, 23(8): 1673-1678. [34] 杨金艳, 王传宽, 等. 土壤水热条件对东北森林土壤表面CO2通量的影响[J]. 植物生态学报, 2006, 30(2): 286-294. [35] Burton A J, Pregitzer K S. Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine [J]. Tree Physiol., 2003, 23: 273-280.

基金

"十一五"国家科技支撑计划子专题"华西雨屏区生态恢复与生态产业耦合技术与示范" (2006BAC01A11-03);四川省重点学科建设项目(SZD0419)。

PDF(902 KB)

891

Accesses

0

Citation

Detail

段落导航
相关文章

/