自然资源学报 ›› 2022, Vol. 37 ›› Issue (12): 3183-3200.doi: 10.31497/zrzyxb.20221211
收稿日期:
2021-09-27
修回日期:
2021-12-28
出版日期:
2022-12-28
发布日期:
2022-12-13
通讯作者:
韩增林(1956- ),男,山东商河人,博士,教授,博士生导师,主要从事经济地理学研究。E-mail: hzl@lnnu.edu.cn作者简介:
赵林(1988- ),男,山东东平人,博士,副教授,硕士生导师,主要从事经济地理学与福利经济学研究。E-mail: zhaolin19880112@126.com
基金资助:
ZHAO Lin1,2(), CAO Nai-gang1, HAN Zeng-lin2(
), GAO Xiao-tong1
Received:
2021-09-27
Revised:
2021-12-28
Online:
2022-12-28
Published:
2022-12-13
摘要:
在定量测度生态福利绩效基础上,借助修正的引力模型和社会网络分析方法,研究了中国生态福利绩效空间关联网络演变特征与形成机制。研究发现:(1)中国生态福利绩效空间关联网络呈现“东密西疏”的空间分异规律,关联网络有“扁平化”发展趋势,网络稳定性亟待提升。(2)京津冀、长三角和珠三角处于网络核心位置,具有较强的溢出效应,东北、西北和西南地区处于边缘位置,贵州和甘肃是联系西南和西北省区的关键节点,生态福利绩效在省际间的传输多通过南部省区的中介作用实现。(3)北京、天津和上海构成净溢出板块,珠三角和江浙地区属经纪人板块,长江中下游及西南地区为净溢出板块,东北、黄河中下游及西北地区构成双向溢出板块。(4)资源禀赋差异、市场调节、政府宏观调控和科学技术推动是空间关联网络演变的主要驱动机制。研究成果可为推动生态福利绩效的跨区域协同提升提供参考依据。
赵林, 曹乃刚, 韩增林, 高晓彤. 中国生态福利绩效空间关联网络演变特征与形成机制[J]. 自然资源学报, 2022, 37(12): 3183-3200.
ZHAO Lin, CAO Nai-gang, HAN Zeng-lin, GAO Xiao-tong. Evolution characteristics and formation mechanism of spatial correlation network of ecological well-being performance in China[J]. JOURNAL OF NATURAL RESOURCES, 2022, 37(12): 3183-3200.
表2
中国生态福利绩效测度结果
省(市、自治区) | EWP指数 | 省(市、自治区) | EWP指数 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2000年 | 2006年 | 2012年 | 2019年 | 增长率 | 2000年 | 2006年 | 2012年 | 2019年 | 增长率 | ||
北京 | 0.690 | 0.456 | 0.743 | 1.002 | 1.983 | 湖南 | 0.529 | 0.458 | 0.636 | 0.969 | 3.241 |
天津 | 0.467 | 0.454 | 0.660 | 0.602 | 1.337 | 广东 | 0.381 | 0.314 | 0.460 | 0.620 | 2.597 |
河北 | 0.428 | 0.399 | 0.587 | 0.748 | 2.986 | 广西 | 0.341 | 0.411 | 0.577 | 0.714 | 3.968 |
山西 | 0.491 | 0.518 | 0.651 | 0.749 | 2.251 | 海南 | 0.658 | 0.461 | 0.603 | 0.685 | 0.217 |
内蒙古 | 0.387 | 0.322 | 0.482 | 0.565 | 2.010 | 重庆 | 0.384 | 0.265 | 0.439 | 0.627 | 2.609 |
辽宁 | 0.347 | 0.343 | 0.457 | 0.446 | 1.322 | 四川 | 0.339 | 0.338 | 0.602 | 0.702 | 3.904 |
吉林 | 0.396 | 0.356 | 0.414 | 0.470 | 0.907 | 贵州 | 0.132 | 0.200 | 0.536 | 0.704 | 9.188 |
黑龙江 | 0.328 | 0.295 | 0.404 | 0.469 | 1.899 | 云南 | 0.339 | 0.285 | 0.489 | 0.837 | 4.874 |
上海 | 0.616 | 0.583 | 0.721 | 0.956 | 2.339 | 陕西 | 0.561 | 0.571 | 0.804 | 0.941 | 2.761 |
江苏 | 0.442 | 0.374 | 0.518 | 0.698 | 2.435 | 甘肃 | 0.295 | 0.319 | 0.460 | 0.602 | 3.831 |
浙江 | 0.361 | 0.405 | 0.593 | 0.744 | 3.872 | 青海 | 0.413 | 0.375 | 0.667 | 0.635 | 2.296 |
安徽 | 0.252 | 0.352 | 0.497 | 0.667 | 5.249 | 宁夏 | 0.308 | 0.203 | 0.253 | 0.352 | 0.708 |
福建 | 0.441 | 0.393 | 0.558 | 0.779 | 3.045 | 新疆 | 0.410 | 0.356 | 0.408 | 0.415 | 0.068 |
江西 | 0.406 | 0.347 | 0.587 | 0.666 | 2.635 | 东部 | 0.479 | 0.412 | 0.583 | 0.713 | 2.121 |
山东 | 0.435 | 0.349 | 0.517 | 0.567 | 1.403 | 中部 | 0.408 | 0.403 | 0.544 | 0.686 | 2.774 |
河南 | 0.459 | 0.445 | 0.602 | 0.816 | 3.076 | 西部 | 0.355 | 0.331 | 0.520 | 0.645 | 3.187 |
湖北 | 0.404 | 0.452 | 0.562 | 0.685 | 2.814 | 全国 | 0.415 | 0.380 | 0.550 | 0.681 | 2.646 |
表3
中国生态福利绩效空间关联网络的中心性特征
省(市、自治区) | 网络中心性指标 | 省(市、自治区) | 网络中心性指标 | ||||
---|---|---|---|---|---|---|---|
度数中心度 | 接近中心度 | 中介中心度 | 度数中心度 | 接近中心度 | 中介中心度 | ||
北京 | 89.655/89.655 | 87.879/90.625 | 9.113/7.681 | 湖北 | 20.690/31.034 | 3.448/37.662 | 0.000/0.252 |
天津 | 82.759/34.483 | 80.556/56.863 | 7.202/0.431 | 湖南 | 20.690/27.586 | 4.715/53.704 | 0.369/9.892 |
河北 | 13.793/17.241 | 49.153/50.877 | 0.059/3.038 | 广东 | 37.931/31.034 | 4.754/42.029 | 5.111/15.237 |
山西 | 17.241/24.138 | 49.153/50.877 | 0.100/1.790 | 广西 | 24.138/27.586 | 4.700/37.179 | 0.544/9.190 |
内蒙古 | 10.345/17.241 | 48.333/3.333 | 0.059/0.000 | 海南 | 17.241/24.138 | 4.708/32.955 | 0.062/0.059 |
辽宁 | 20.690/24.138 | 3.571/3.571 | 0.082/0.123 | 重庆 | 24.138/31.034 | 4.700/31.183 | 0.092/14.26 |
吉林 | 17.241/24.138 | 3.571/3.567 | 0.000/0.883 | 四川 | 20.690/24.138 | 3.333/23.967 | 0.000/0.038 |
黑龙江 | 17.241/24.138 | 3.333/3.333 | 0.000/0.000 | 贵州 | 44.828/27.586 | 3.333/32.955 | 0.000/2.704 |
上海 | 96.552/93.103 | 96.667/93.548 | 7.628/14.361 | 云南 | 27.586/24.138 | 3.448/32.955 | 0.000/2.509 |
江苏 | 34.483/79.310 | 60.417/76.316 | 0.510/8.291 | 陕西 | 13.793/24.138 | 4.915/21.014 | 0.021/0.185 |
浙江 | 34.483/62.069 | 59.184/69.048 | 0.000/1.901 | 甘肃 | 20.690/41.379 | 3.448/25.893 | 0.123/8.987 |
安徽 | 17.241/20.690 | 50.877/52.727 | 2.648/0.679 | 青海 | 13.793/24.138 | 3.448/20.714 | 0.000/0.000 |
福建 | 24.138/58.621 | 4.700/52.727 | 0.369/8.807 | 宁夏 | 10.345/27.586 | 3.333/3.333 | 0.000/0.000 |
江西 | 24.138/24.138 | 4.708/53.704 | 0.811/12.469 | 新疆 | 10.345/27.586 | 3.333/3.333 | 0.000/0.000 |
山东 | 13.793/20.690 | 49.153/3.333 | 0.059/0.000 | 均值 | 27.816/34.253 | 25.173/37.170 | 1.174/4.138 |
河南 | 13.793/20.690 | 48.333/51.786 | 0.261/0.372 | — | — | — | — |
表5
空间关联网络的影响因素回归结果
变量 | 2000年 | 2002年 | 2004年 | 2006年 | 2008年 | 2010年 | 2012年 | 2014年 | 2016年 | 2019年 |
---|---|---|---|---|---|---|---|---|---|---|
dis | 0.189*** (0.000) | 0.187*** (0.000) | 0.192*** (0.000) | 0.248*** (0.000) | 0.259*** (0.000) | 0.279*** (0.000) | 0.274*** (0.000) | 0.242*** (0.000) | 0.255*** (0.000) | 0.246*** (0.000) |
pgdp | 0.393*** (0.000) | 0.390*** (0.000) | 0.419*** (0.000) | 0.526*** (0.000) | 0.527*** (0.000) | 0.537*** (0.000) | 0.510*** (0.000) | 0.484*** (0.000) | 0.522*** (0.000) | 0.573*** (0.000) |
inds | 0.144** (0.016) | 0.123** (0.029) | 0.103** (0.041) | 0.011 (0.363) | 0.008 (0.420) | -0.014 (0.265) | 0.015 (0.304) | 0.026 (0.159) | -0.017 (0.306) | -0.122*** (0.005) |
open | 0.048* (0.084) | 0.098** (0.017) | 0.079** (0.044) | 0.042 (0.136) | 0.013 (0.265) | 0.010 (0.378) | 0.026 (0.206) | 0.039* (0.096) | 0.056* (0.070) | 0.042* (0.090) |
env | 0.009 (0.348) | -0.002 (0.510) | -0.013 (0.373) | -0.008 (0.429) | 0.001 (0.476) | -0.019 (0.175) | -0.046** (0.020) | -0.036** (0.022) | -0.011 (0.340) | -0.080*** (0.002) |
gov | -0.014 (0.365) | -0.001 (0.542) | 0.030 (0.179) | 0.038* (0.088) | 0.022 (0.196) | -0.016 (0.214) | -0.031* (0.085) | -0.017 (0.229) | 0.011 (0.369) | -0.008 (0.421) |
tech | 0.074** (0.046) | 0.026 (0.191) | 0.058* (0.066) | 0.066** (0.034) | 0.086*** (0.002) | 0.084*** (0.000) | 0.047** (0.027) | 0.051** (0.021) | 0.059*** (0.007) | 0.012 (0.374) |
R2 | 0.289 | 0.311 | 0.321 | 0.357 | 0.340 | 0.347 | 0.335 | 0.319 | 0.345 | 0.313 |
Adj-R2 | 0.285 | 0.306 | 0.317 | 0.352 | 0.336 | 0.343 | 0.330 | 0.317 | 0.340 | 0.309 |
[1] |
周亮, 车磊, 周成虎. 中国城市绿色发展效率时空演变特征及影响因素. 地理学报, 2019, 74(10): 2027-2044.
doi: 10.11821/dlxb201910006 |
[ ZHOU L, CHE L, ZHOU C H. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. Acta Geographica Sinica, 2019, 74(10): 2027-2044.]
doi: 10.11821/dlxb201910006 |
|
[2] |
王圣云, 韩亚杰, 任慧敏, 等. 中国省域生态福利绩效评估及其驱动效应分解. 资源科学, 2020, 42(5): 840-855.
doi: 10.18402/resci.2020.05.04 |
[ WANG S Y, HAN Y J, REN H M, et al. Evaluation of provincial ecological well-being performance and its driving effect decomposition in China. Resources Science, 2020, 42(5): 840-855.]
doi: 10.18402/resci.2020.05.04 |
|
[3] | 胡美娟, 李在军, 丁正山, 等. 基于三维福利的城市生态福利强度及驱动模式: 以长三角地区为例. 自然资源学报, 2021, 36(2): 327-341. |
[ HU M J, LI Z J, DING Z S, et al. Urban ecological well-being intensity and driving mode based on three-dimensional well-being: Taking the Yangtze Delta as an example. Journal of Natural Resources, 2021, 36(2): 327-341.]
doi: 10.31497/zrzyxb.20210205 |
|
[4] | 诸大建, 张帅. 生态福利绩效与深化可持续发展的研究. 同济大学学报: 社会科学版, 2014, 25(5): 106-115. |
[ ZHU D J, ZHANG S. Ecological well-being performance and further research on sustainable development. Journal of Tongji University: Social Science Edition, 2014, 25(5): 106-115.] | |
[5] | 邓远建, 杨旭, 马强文, 等. 中国生态福利绩效水平的地区差距及收敛性. 中国人口·资源与环境, 2021, 31(4): 132-143. |
[ DENG Y J, YANG X, MA Q W, et al. Regional disparity and convergence of China's ecological welfare performance level. China Population, Resources and Environment, 2021, 31(4): 132-143.] | |
[6] |
刘华军, 贾文星. 中国区域经济增长的空间网络关联及收敛性检验. 地理科学, 2019, 39(5): 726-733.
doi: 10.13249/j.cnki.sgs.2019.05.003 |
[ LIU H J, JIA W X. Spatial network correlation and convergence test of regional economic growth in China. Scientia Geographica Sinica, 2019, 39(5): 726-733.]
doi: 10.13249/j.cnki.sgs.2019.05.003 |
|
[7] | DALY H E. The word dynamics of economic growth: The economics of the steady state. America Economic Review, 1974, 64(2): 15-23. |
[8] | 诸大建. 生态经济学: 可持续发展的经济学和管理学. 中国科学院院刊, 2008, 23(6): 520-530. |
[ ZHU D J. Ecological economics: Economics and management of sustainable development. Bulletin of Chinese Academy of Sciences, 2008, 23(6): 520-530.] | |
[9] | 诸大建. 超越增长: 可持续发展经济学如何不同于新古典经济学. 学术月刊, 2013, 45(10): 79-89. |
[ ZHU D J. Beyond growth: What are differences between sustainable development economics and neoclassical economics. Academic Monthly, 2013, 45(10): 79-89.] | |
[10] | 诸大建, 张帅. 生态福利绩效及其与经济增长的关系研究. 中国人口·资源与环境, 2014, 24(9): 59-67. |
[ ZHU D J, ZHANG S. Research on ecological well-being performance and its relationship with economic growth. China Population, Resources and Environment, 2014, 24(9): 59-67.] | |
[11] |
COMMON M. Measuring national economic performance without using prices. Ecological Economics, 2007, 64(1): 92-102.
doi: 10.1016/j.ecolecon.2007.07.017 |
[12] |
DIETZ T, ROSA E A, YORK R. Environmentally efficient well-being: Is there a Kuznets curve?. Applied Geography, 2012, 32(1): 21-28.
doi: 10.1016/j.apgeog.2010.10.011 |
[13] | 臧漫丹, 诸大建, 刘国平. 生态福利绩效: 概念、内涵及G20实证. 中国人口·资源与环境, 2013, 23(5): 118-124. |
[ ZANG M D, ZHU D J, LIU G P. Ecological well-being performance: Concept, connotation and empirical of G20. China Population, Resources and Environment, 2013, 23(5): 118-124.] | |
[14] | 冯吉芳, 袁健红. 中国区域生态福利绩效及其影响因素. 中国科技论坛, 2016, (3): 100-105. |
[ FENG J F, YUAN J H. Study on Chinese regional ecological well-being performance and its influence factors. Forum on Science and Technology in China, 2016, (3): 100-105.] | |
[15] | ZHANG S, ZHU D, SHI Q, et al. Which countries are more ecologically efficient in improving human well-being? An application of the index of ecological well-being performance. Resources Conservation & Recycling, 2018, 129: 112-119. |
[16] |
BEHJAT A, TARAZKAR M H. Investigating the factors affecting the ecological well-being performance in Iran from 1994 to 2014. Environment, Development and Sustainability, 2021, 23(9): 13871-13889.
doi: 10.1007/s10668-021-01243-0 |
[17] |
KNIGHT K W, ROSA E A. The environmental efficiency of well-being: A cross-national analysis. Social Science Research, 2011, 40(3): 931-949.
doi: 10.1016/j.ssresearch.2010.11.002 |
[18] | 亓朋, 艾洪山, 徐昱东, 等. 中国各地区生态福利绩效评价及贸易开放影响效应研究. 北京: 经济管理出版社, 2020. |
[ QI P, AI H S, XU Y D, et al. Research on the Evaluation of Ecological Well-being Performance and the Effects of Trade Opening in Chinese Provinces. Beijing: Economy & Management Publishing House, 2020.] | |
[19] | DIETZ T, ROSA E A, YORK R. Environmentally efficient well-being: Rethinking sustainability as the relationship between human well-being and environmental impacts. Human Ecology Review, 2009, 16(1): 114-123. |
[20] | 肖黎明, 张仙鹏. 强可持续理念下绿色创新效率与生态福利绩效耦合协调的时空特征. 自然资源学报, 2019, 34(2): 312-324. |
[ XIAO L M, ZHANG X P. Spatio-temporal characteristics of coupling coordination between green innovation efficiency and ecological welfare performance under the concept of strong sustainability. Journal of Natural Resources, 2019, 34(2): 312-324.]
doi: 10.31497/zrzyxb.20190208 |
|
[21] | 徐维祥, 徐志雄, 刘程军. 黄河流域地级城市土地集约利用效率与生态福利绩效的耦合性分析. 自然资源学报, 2021, 36(1): 114-130. |
[ XU W X, XU Z X, LIU C J. Coupling analysis of land intensive use efficiency and ecological well-being performance of cities in the Yellow River Basin. Journal of Natural Resources, 2021, 36(1): 114-130.]
doi: 10.31497/zrzyxb.20210108 |
|
[22] | 龙亮军, 王霞, 郭兵. 生态福利绩效视角下的上海市可持续发展评价研究. 长江流域资源与环境, 2016, 25(1): 9-15. |
[ LONG L J, WANG X, GUO B. Evaluation on sustainable urban development from the perspective of ecological well-being performance: A case study of Shanghai. Resources and Environment in the Yangtze Basin, 2016, 25(1): 9-15.] | |
[23] | 龙亮军, 王霞, 郭兵. 基于改进DEA模型的城市生态福利绩效评价研究: 以我国35个大中城市为例. 自然资源学报, 2017, 32(4): 595-605. |
[ LONG L J, WANG X, GUO B. Evaluation of urban ecological well-being performance based on revised DEA model: A case study of 35 major cities in China. Journal of Natural Resources, 2017, 32(4): 595-605.] | |
[24] | 臧漫丹, 娄子孟, 孔嘉婧. 中国省际水资源福利绩效时空分异分析. 长江流域资源与环境, 2019, 28(4): 805-816. |
[ ZANG M D, LOU Z M, KONG J J. Spatial-temporal differentiation of interprovincial water well-being performance in China. Resources and Environment in the Yangtze Basin, 2019, 28(4): 805-816.] | |
[25] |
ZHANG Y, MAO Y, JIAO L, et al. Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environmental Impact Assessment Review, 2021, 89(1): 106580, Doi: 10.1016/j.eiar.2021.106580.
doi: 10.1016/j.eiar.2021.106580 |
[26] |
BIAN J, REN H, LIU P. Evaluation of urban ecological well-being performance in China: A case study of 30 provincial capital cities. Journal of Cleaner Production, 2020, 254: 120109, Doi: 10.1016/j.jclepro.2020.120109.
doi: 10.1016/j.jclepro.2020.120109 |
[27] |
LONG X, YU H, SUN M, et al. Sustainability evaluation based on the three-dimensional ecological footprint and human development index: A case study on the four island regions in China. Journal of Environmental Management, 2020, 265: 110509, Doi: 10.1016/j.jenvman.2020.110509.
doi: 10.1016/j.jenvman.2020.110509 |
[28] | 龙亮军. 基于两阶段Super-NSBM模型的城市生态福利绩效评价研究. 中国人口·资源与环境, 2019, 29(7): 1-10. |
[ LONG L J. Evaluation of urban ecological well-being performance of Chinese major cities based on two-stage super-efficiency network SBM model. China Population, Resources and Environment, 2019, 29(7): 1-10.] | |
[29] |
YU S, DONG M. Sustainable development of China's regions from the perspective of ecological welfare performance: Analysis based on GM (1, 1) and the malmquist index. Environment, Development and Sustainability, 2021, 7: 1-30.
doi: 10.1007/s10668-003-0177-5 |
[30] |
FENG Y, DONG X, ZHAO X, et al. Evaluation of urban green development transformation process for Chinese cities during 2005-2016. Journal of Cleaner Production, 2020, 266: 121707, Doi: 10.1016/j.jclepro.2020.121707.
doi: 10.1016/j.jclepro.2020.121707 |
[31] | 林木西, 耿蕊, 李国柱. 省域生态福利绩效水平的空间非均衡性研究: 基于MLD指数与分布动态学模型. 东岳论丛, 2019, 40(10): 73-83. |
[ LIN M X, GENG R, LI G Z. Study on spatial disequilibrium of provincial ecological well-being performance level: Based on MLD index and distribution dynamics model. Dong Yue Tribune, 2019, 40(10): 73-83.] | |
[32] | 胡美娟. 综合福利视角下城市生态福利绩效演化过程、机制与路径优化. 南京: 南京师范大学, 2020. |
[ HU M J. Evolution process, mechanism and path optimization of urban ecological well-being performance from the perspective of comprehensive welfare. Nanjing: Nanjing Normal University, 2020.] | |
[33] |
WANG S, ZHANG Y, YAO X. Research on spatial unbalance and influencing factors of ecological well-being performance in China. International Journal of Environmental Research and Public Health, 2021, 18(17): 9299, Doi: 10.3390/ijerph18179299.
doi: 10.3390/ijerph18179299 |
[34] |
WANG R, FENG Y, VILA A. Research on China's ecological welfare performance evaluation and improvement path from the perspective of high-quality development. Mathematical Problems in Engineering, 2020, 2: 1-14.
doi: 10.1155/S1024123X9600021X |
[35] | 孟雪, 狄乾斌, 季建文. 京津冀城市群生态绩效水平测度及影响因素. 经济地理, 2020, 40(1): 181-186. |
[ MENG X, DI Q B, JI J W. Measurement on the level of the urban ecological performance and analysis of influential factors in Beijing-Tianjin-Hebei Urban Agglomeration. Economic Geography, 2020, 40(1): 181-186.] | |
[36] |
李成宇, 张士强, 张伟, 等. 中国省际生态福利绩效测算及影响因素研究. 地理科学, 2019, 39(12): 1875-1883.
doi: 10.13249/j.cnki.sgs.2019.12.005 |
[ LI C Y, ZHANG S Q, ZHANG W, et al. Measurement and influencing factors of inter-provincial ecological well-being performance in China. Scientia Geographica Sinica, 2019, 39(12): 1875-1883.]
doi: 10.13249/j.cnki.sgs.2019.12.005 |
|
[37] | 邓远建, 杨旭, 陈光炬, 等. 中国生态福利绩效水平的空间非均衡及动态演进. 中国地质大学学报: 社会科学版, 2020, 20(4): 115-127. |
[ DENG Y J, YANG X, CHEN G J, et al. Spatial unbalanced and dynamic evolution of China's ecological welfare performance level. Journal of China University of Geosciences: Social Sciences Edition, 2020, 20(4): 115-127.] | |
[38] |
HU M, SARWAR S, LI Z. Spatio-temporal differentiation mode and threshold effect of Yangtze River Delta urban ecological well-being performance based on network DEA. Sustainability, 2021, 13: 4550, Doi: 10.3390/su13084550.
doi: 10.3390/su13084550 |
[39] | 杜慧彬, 黄立军, 张辰, 等. 中国省级生态福利绩效区域差异性分解和收敛性研究. 生态经济, 2019, 35(3): 187-193. |
[ DU H B, HUANG L J, ZHANG C, et al. Research on the regional differences decomposition and convergence mechanism of ecological well-being performance. Ecological Economy, 2019, 35(3): 187-193.] | |
[40] |
YAO L, YU Z, WU M, et al. The spatiotemporal evolution and trend prediction of ecological well-being performance in China. Land, 2021, 10(1): 1-17.
doi: 10.3390/land10010001 |
[41] | 郭炳南, 王宇, 姜彦彦, 等. 技术进步偏向对中国生态福利绩效的影响. 经济论坛, 2021, (6): 59-71. |
[ GUO B N, WANG Y, JIANG Y Y, et al. The influence of technological progress bias on the ecological welfare performance in China. Economic Forum, 2021, (6): 59-71.] | |
[42] | 方时姣, 肖权. 中国区域生态福利绩效水平及其空间效应研究. 中国人口·资源与环境, 2019, 29(3): 1-10. |
[ FANG S J, XIAO Q. Research on regional ecological well-being performance and spatial effect in China. China Population, Resources and Environment, 2019, 29(3): 1-10.] | |
[43] |
FENG Y, ZHONG S, LI Q, et al. Ecological well-being performance growth in China (1994-2014): From perspectives of industrial structure green adjustment and green total factor productivity. Journal of Cleaner Production, 2019, 236: 117556, Doi: 10.1016/j.jclepro.2019.07.031.
doi: 10.1016/j.jclepro.2019.07.031 |
[44] | 肖黎明, 肖沁霖. 黄河流域城市生态福利绩效格局分异及空间收敛分析. 软科学, 2021, 35(2): 46-53. |
[ XIAO L M, XIAO Q L. Study on the differentiation and spatial convergence of urban ecological welfare performance patterns in the Yellow River Basin. Soft Science, 2021, 35(2): 46-53.] | |
[45] | 郭炳南, 唐利, 张浩. 环境规制与长江经济带生态福利绩效的空间效应研究. 经济体制改革, 2021, (3): 73-79. |
[ GUO B N, TANG L, ZHANG H. Spatial effects of environmental regulation and ecological welfare performance in Yangtze River Economic Belt. Reform of Economic System, 2021, (3): 73-79.] | |
[46] | 王喜平, 罗金芳. 京津冀生态福利绩效及时空演变研究. 科技管理研究, 2020, 40(21): 249-255. |
[ WANG X P, LUO J F. Study on ecological welfare performance and spatio-temporal evolution of Beijing-Tianjin-Hebei region. Science and Technology Management Research, 2020, 40(21): 249-255.] | |
[47] |
TONE K, TSUTSUI M. An epsilon-based measure of efficiency in DEA: A third pole of technical efficiency. European Journal of Operational Research, 2010, 207(3): 1554-1563.
doi: 10.1016/j.ejor.2010.07.014 |
[48] |
赵林, 刘焱序, 曹乃刚, 等. 中国包容性绿色效率时空格局与溢出效应分析. 地理科学进展, 2021, 40(3): 382-396.
doi: 10.18306/dlkxjz.2021.03.003 |
[ ZHAO L, LIU Y X, CAO N G, et al. Spatiotemporal pattern and spillover effects of inclusive green efficiency in China. Progress in Geography, 2021, 40(3): 382-396.]
doi: 10.18306/dlkxjz.2021.03.003 |
|
[49] |
王兆峰, 刘庆芳. 中国省域旅游效率空间网络结构演化及其影响因素. 地理科学, 2021, 41(3): 397-406.
doi: 10.13249/j.cnki.sgs.2021.03.004 |
[ WANG Z F, LIU Q F. The evolution and influencing factors of spatial network structure of China's provincial tourism efficiency. Scientia Geographica Sinica, 2021, 41(3): 397-406.] | |
[50] | 陈清怡, 千庆兰, 姚作林. 广东省城市创新发展水平及其网络结构演化. 经济地理, 2021, 41(4): 38-47. |
[ CHEN Q Y, QIAN Q L, YAO Z L. Urban innovation development level and network structure evolution in Guangdong province. Economic Geography, 2021, 41(4): 38-47.] | |
[51] |
孙才志, 马奇飞. 中国省际水资源绿色效率空间关联网络研究. 地理研究, 2020, 39(1): 53-63.
doi: 10.11821/dlyj020180926 |
[ SUN C Z, MA Q F. Spatial correlation network of water resources green efficiency between provinces of China. Geographical Research, 2020, 39(1): 53-63.]
doi: 10.11821/dlyj020180926 |
|
[52] | 刘军. 整体网分析:UCINET 软件实用指南(第二版). 上海: 格致出版社, 2014. |
[ LIU J. Lecture on Whole Network Approach:Apractical Guide to UCINET (2nd). Shanghai: Gezhi Publishing House, 2014.] | |
[53] | 联合国开发计划署. 中国人类发展报告 (2013). 北京: 中国对外翻译出版公司, 2013. |
[ UNDP. China Human Development Report 2013. Beijing: China Translation & Publishing Corporation, 2013.] |
[1] | 蔡秀亭, 吕洁华, 王成齐. 中国森林生态安全空间关联的网络特征及其驱动机制[J]. 自然资源学报, 2022, 37(8): 2137-2152. |
[2] | 马志飞, 宋伟轩, 王捷凯, 陈艳如, 熊烨箐. 长三角地区城乡融合发展水平、演化及影响因素[J]. 自然资源学报, 2022, 37(6): 1467-1480. |
[3] | 李在军, 尹上岗, 姜友雪, 吕玉兰. 长三角经济增长与碳排放异速关系及形成机制[J]. 自然资源学报, 2022, 37(6): 1507-1523. |
[4] | 唐志鹏, 于浩杰, 陈明星, 程嘉梵. 基于函数极值条件下的中国碳达峰碳中和情景分析[J]. 自然资源学报, 2022, 37(5): 1247-1260. |
[5] | 徐英启, 程钰, 王晶晶, 刘娜. 中国低碳试点城市碳排放效率时空演变与影响因素[J]. 自然资源学报, 2022, 37(5): 1261-1276. |
[6] | 毛熙彦, 贺灿飞, 王佩玉, 许蕊, 胡醒木子, 贺舒琪. 中国环境产品进出口贸易对碳排放的影响[J]. 自然资源学报, 2022, 37(5): 1321-1337. |
[7] | 王梓羽, 汪德根, 朱梅. 中国20世纪建筑遗产空间分异及形成机理[J]. 自然资源学报, 2022, 37(3): 784-802. |
[8] | 王婷, 李双双, 延军平, 何锦屏. 基于ENSO发展过程的中国夏季降水时空变化特征[J]. 自然资源学报, 2022, 37(3): 803-815. |
[9] | 孙才志, 魏亚琼, 赵良仕. 干旱区水—能源—粮食纽带系统协同演化——以中国西北地区为例[J]. 自然资源学报, 2022, 37(2): 320-333. |
[10] | 沈镭. 面向碳中和的中国自然资源安全保障与实现策略[J]. 自然资源学报, 2022, 37(12): 3037-3048. |
[11] | 臧漫丹, 高易, 李金. 行政等级与城市规模对生态福利绩效的影响研究[J]. 自然资源学报, 2022, 37(12): 3201-3216. |
[12] | 王灵恩, 倪笑雯, 李云云, 周彬, 刘俊, 赵金凌. 基于入户称重调研的居民春节食物消费和浪费特征[J]. 自然资源学报, 2022, 37(10): 2544-2558. |
[13] | 徐维祥, 周建平, 郑金辉, 李露, 刘程军. 多尺度网络视角下企业产业扶贫资源跨区域配置及减贫效应[J]. 自然资源学报, 2022, 37(10): 2703-2719. |
[14] | 张玉, 王介勇, 刘彦随. 基于文献荟萃分析方法的中国空心村整治潜力与模式[J]. 自然资源学报, 2022, 37(1): 110-120. |
[15] | 吴英迪, 蒙吉军. 中国自然资源生态服务重要性评价与空间格局分析[J]. 自然资源学报, 2022, 37(1): 17-33. |
|