自然资源学报 ›› 2022, Vol. 37 ›› Issue (12): 3153-3166.doi: 10.31497/zrzyxb.20221209
收稿日期:
2022-01-04
修回日期:
2022-02-23
出版日期:
2022-12-28
发布日期:
2022-12-13
通讯作者:
沈金生(1972- ),男,河北黄骅人,博士,教授,研究方向为海洋资源经济。E-mail: shjsh0310@126.com作者简介:
曹港程(1997- ),女,山东滨州人,硕士,研究方向为海洋资源经济。E-mail: caogangcheng0504@163.com
基金资助:
CAO Gang-cheng(), SHEN Jin-sheng(
)
Received:
2022-01-04
Revised:
2022-02-23
Online:
2022-12-28
Published:
2022-12-13
摘要:
海洋牧场建设是中国扩增海洋碳汇,实现碳中和战略目标的有效途径。碳汇具有明显的外部性,只有确定合理的补偿标准才能调动海洋牧场建设经营者积极性。以海洋牧场中藻类、贝类、鱼类、甲壳及其他类经济性碳汇资源为研究对象,利用最优化模型核算了碳汇资源生态价值的补偿标准。研究结果表明:藻类、贝类、鱼类、甲壳及其他类的生态补偿标准分别为134.94元/t、820.05元/t、782.39元/t、3764.16元/t,补偿标准存在种类间差异性。研究结果可为优化当前海洋牧场生态补偿政策提供理论参考。
曹港程, 沈金生. 海洋牧场碳汇资源生态补偿标准[J]. 自然资源学报, 2022, 37(12): 3153-3166.
CAO Gang-cheng, SHEN Jin-sheng. Ecological compensation standards of carbon sink resources in the marine ranch[J]. JOURNAL OF NATURAL RESOURCES, 2022, 37(12): 3153-3166.
表1
海洋牧场碳汇资源生态功能
生态系统服务 | 生态功能 | 碳汇资源 | 功能描述 |
---|---|---|---|
调节服务 | X1固碳功能 | 藻类、贝类、鱼类、甲壳及其他类 | 固碳功能如 |
X2产氧功能 | 藻类 | 藻类通过光合作用释放O2,供给海洋动物呼吸,并促进大气中CO2和O2平衡 | |
X3净化氮功能 | 藻类、贝类、鱼类 | 藻类、贝类、鱼类吸收有机氮、有机磷,通过反硝化作用,最终以无机形式将氮、磷释放到大气中,降低海水富营养化程度 | |
X4净化磷功能 | 藻类、贝类 | ||
X5净化重金属功能 | 藻类、贝类、鱼类 | 藻类、贝类、鱼类利用体内金属疏蛋白解毒机制将吸附的重金属重新以无毒形式释放 | |
X6干扰调节功能 | 贝类 | 贝类礁体中双壳贝类能够促进生物沉积,降低海水流速,减少水土流失,减轻风暴潮、海浪等对海洋环境的侵蚀,是“活的海岸线” | |
X7生物控制功能 | 鱼类 | 增殖放流中的鱼类利用摄食过程恢复和优化海洋生物种群结构。该生态过程既促进生态系统保持营养平衡和良性竞争,又有效控制外来生物和有害生物入侵,减少海洋牧场生物灾害 | |
支持服务 | X8物种多样性功能 | 藻类、贝类、鱼类、甲壳及其他类 | 增殖放流、保护野生种群等丰富海洋基因资源;投放人工鱼礁、修复海藻床等构建增殖物种的产卵场、索饵场和洄游通道,提高生物丰度 |
表6
海洋牧场碳汇资源各生态功能产出能力及其占比
藻类 | 贝类 | 鱼类 | 甲壳及其他类 | |
---|---|---|---|---|
X1/t | 223152971 (98.01%) | 58637791 (97.04%) | 4710900 (98.81%) | 16495660 (100%) |
X2/t | 3717446 (1.63%) | |||
X3/t | 50924 (0.02%) | 19607 (0.03%) | 4464 (0.09%) | |
X4/t | 6248 (0.003%) | 2027 (0.003%) | ||
X5/t | 749806 (0.33%) | 1766941 (2.92%) | 52150 (1.09%) | |
X6/hm2 | 109011 (12.65%) | |||
X7/hm2 | 421872 (50.00%) | |||
X8/hm2 | 2330405 (100.00%) | 752440 (87.35%) | 421871 (50.00%) | 869920 (100.00%) |
[1] |
SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2. Science, 2004, 305(5682): 367-371.
pmid: 15256665 |
[2] |
MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 2011, 9(10): 552-560.
doi: 10.1890/110004 |
[3] | 黄贤金, 张秀英, 卢学鹤, 等. 面向碳中和的中国低碳国土开发利用. 自然资源学报, 2021, 36(12): 2995-3006. |
[ HUANG X J, ZHANG X Y, LU X H, et al. Land development and utilization for carbon neutralization. Journal of Natural Resources, 2021, 36(12): 2995-3006.]
doi: 10.31497/zrzyxb.20211201 |
|
[4] |
WU J P, ZHANG H B, PAN Y W, et al. Opportunities for blue carbon strategies in China. Ocean & Coastal Management, 2020, 194(1): 105241, Doi: 10.1016/j.ocecoaman.2020.105241.
doi: 10.1016/j.ocecoaman.2020.105241 |
[5] |
DUARTE C M, LOSADA I J, HENDRIKS I E, et al. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 2013, 3(11): 961-968.
doi: 10.1038/nclimate1970 |
[6] | 焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求. 中国科学院院刊, 2021, 36(2): 179-187. |
[ JIAO N Z. Developing ocean negative carbon emission technology to support national carbon neutralization. Bulletin of Chinese Academy of Sciences, 2021, 36(2): 179-187.] | |
[7] |
DEVRIES T, HOLZER M, PRIMEAU F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 2017, 542(7640): 215-218.
doi: 10.1038/nature21068 |
[8] | 唐启升, 刘慧. 海洋渔业碳汇及其扩增战略. 中国工程科学, 2016, 18(3): 68-73. |
[ TANG Q S, LIU H. Strategy for carbon sink and its amplification in marine fisheries. Strategic Study of CAE, 2016, 18(3): 68-73.] | |
[9] |
ZHOU X J, ZHAO X, ZHANG S Y, et al. Marine ranching construction and management in East China Sea: Programs for sustainable fishery and aquaculture. Water, 2019, 11(6): 1237, Doi: 10.3390/w11061237.
doi: 10.3390/w11061237 |
[10] | LEE M O, OTAKE S, KIM J K. Transition of artificial reefs (ARs) research and its prospects. Ocean & Coastal Management, 2018, 154(3): 55-65. |
[11] | 刘鸿雁, 杨超杰, 张沛东, 等. 基于Ecopath模型的崂山湾人工鱼礁区生态系统结构和功能研究. 生态学报, 2019, 39(11): 3926-3936. |
[ LIU H Y, YANG C J, ZHANG P D, et al. An ecopath evaluation of system structure and function for the Laoshan Bay artificial reef zone ecosystem. Acta Ecologica Sinica, 2019, 39(11): 3926-3936.] | |
[12] | 张樨樨, 刘鹏. 中国海洋牧场生态系统优化的政策仿真与模拟. 中国人口·资源与环境, 2019, 29(12): 168-176. |
[ ZHANG X X, LIU P. Research of policy simulation on marine ranch ecosystem optimization in China. China Population, Resources and Environment, 2019, 29(12): 168-176.] | |
[13] |
沈金生, 梁瑞芳. 海洋牧场蓝色碳汇定价研究. 资源科学, 2018, 40(9): 1812-1821.
doi: 10.18402/resci.2018.09.11 |
[ SHEN J S, LIANG R F. Study on the blue carbon sink pricing of marine ranch. Resources Science, 2018, 40(9): 1812-1821.]
doi: 10.18402/resci.2018.09.11 |
|
[14] |
WAN X L, LI Q Q, QIU L L, et al. How do carbon trading platform participation and government subsidy motivate blue carbon trading of marine ranching? A study based on evolutionary equilibrium strategy method. Marine Policy, 2021, 130(2): 104567, Doi: 10.1016/j.marpol.2021.104567.
doi: 10.1016/j.marpol.2021.104567 |
[15] |
LUBCHENCO J, HAUGAN P M, PANGESTU M E. Five priorities for a sustainable ocean economy. Nature, 2020, 588(7836): 30-32.
doi: 10.1038/d41586-020-03303-3 |
[16] | 庞洁, 靳乐山.基于渔民受偿意愿的鄱阳湖禁捕补偿标准研究. 中国人口·资源与环境, 2020, 30(7): 169-176. |
[ PANG J, JIN L S. Compensation rate for fishing withdrawal from Poyang Lake based on fishermen's willingness to accept. China Population, Resources and Environment, 2020, 30(7): 169-176.] | |
[17] | 邓元杰, 姚顺波, 侯孟阳, 等. 退耕还林还草工程对生态系统碳储存服务的影响: 以黄土高原丘陵沟壑区子长县为例. 自然资源学报, 2020, 35(4): 826-844. |
[ DENG Y J, YAO S B, HOU M Y, et al. Assessing the effects of the Green for Grain Program on ecosystem carbon storage service by linking the InVEST and FLUS models: A case study of Zichang county in hilly and gully region of Loess Plateau. Journal of Natural Resources, 2020, 35(4): 826-844.]
doi: 10.31497/zrzyxb.20200407 |
|
[18] | 王正淑, 王继军, 刘佳. 基于碳汇的县南沟流域退耕林地补偿标准研究. 自然资源学报, 2016, 31(5): 779-788. |
[ WANG Z S, WANG J J, LIU J. Study on the compensation standard of returning farmland to forest in Xiannangou Watershed from the perspective of carbon sink. Journal of Natural Resources, 2016, 31(5): 779-788.] | |
[19] | 牛志伟, 邹昭晞. 农业生态补偿的理论与方法: 基于生态系统与生态价值一致性补偿标准模型. 管理世界, 2019, 35(11): 133-143. |
[ NIU Z W, ZOU Z X. Theory and method of agro-ecological compensation: Based on the standard model of consistency compensation between ecosystem and ecological value. Management World, 2019, 35(11): 133-143.] | |
[20] | 杨红生, 章守宇, 张秀梅, 等. 中国现代化海洋牧场建设的战略思考. 水产学报, 2019, 43(4): 1255-1262. |
[ YANG H S, ZHANG S Y, ZHANG X M, et al. Strategic thinking on the construction of modern marine ranching in China. Journal of Fisheries of China, 2019, 43(4): 1255-1262.] | |
[21] | 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进. 自然资源学报, 2015, 30(8): 1243-1254. |
[ XIE G D, ZHANG C X, ZHANG L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area. Journal of Natural Resources, 2015, 30(8): 1243-1254.] | |
[22] |
COSTANZA R, D'ARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387(6630): 253-260.
doi: 10.1038/387253a0 |
[23] |
CHISHOLM S W. Stirring times in the Southern Ocean. Nature, 2000, 407(6805): 685-687.
doi: 10.1038/35037696 |
[24] | 焦念志. 微生物碳泵理论揭开深海碳库跨世纪之谜的面纱. 世界科学, 2019, (10): 38-39. |
[ JIAO N Z. Microbial carbon pump theory unveils the cross century mystery of deep-sea carbon pool. World Science, 2019, (10): 38-39.] | |
[25] |
张继红, 方建光, 唐启升. 中国浅海贝藻养殖对海洋碳循环的贡献. 地球科学进展, 2005, 20(3): 359-365.
doi: 10.11867/j.issn.1001-8166.2005.03.0359 |
[ ZHANG J H, FANG J G, TANG Q S. The contribution of shellfish and seaweed mariculture in China to the carbon cycle of coastal ecosystem. Advances in Earth Science, 2005, 20(3): 359-365.] | |
[26] |
BREWIN R J W, SATHYENDRANATH S, PLATT T, et al. Sensing the ocean biological carbon pump from space: A review of capabilities, concepts, research gaps and future developments. Earth-Science Reviews, 2021, 217(13): 103604, Doi: 10.1016/j.earscirev.2021.103604.
doi: 10.1016/j.earscirev.2021.103604 |
[27] |
HANSELL D A, CARLSON C A. Localized refractory dissolved organic carbon sinks in the deep ocean. Global Biogeochemical Cycles, 2013, 27(3): 705-710.
doi: 10.1002/gbc.20067 |
[28] | 陈作志, 邱永松. 南海北部生态系统食物网结构、能量流动及系统特征. 生态学报, 2010, 30(18): 4855-4865. |
[ CHEN Z Z, QIU Y S. Assessment of the food-web structure, energy flows, and system attribute of Northern South China Sea Ecosystem. Acta Ecologica Sinica, 2010, 30(18): 4855-4865.] | |
[29] | 李睿, 韩震, 程和琴, 等. 基于ECOPATH模型的东海区生物资源能量流动规律的初步研究. 资源科学, 2010, 32(4): 600-605. |
[ LI R, HAN Z, CHENG H Q, et al. A preliminary study on biological resources energy flows based on the ECOPATH model in the East China Sea. Resources Science, 2010, 32(4): 600-605.] | |
[30] | 李纯厚, 贾晓平, 齐占会, 等. 大亚湾海洋牧场低碳渔业生产效果评价. 农业环境科学学报, 2011, 30(11): 2346-2352. |
[ LI C H, JIA X P, QI Z H, et al. Effect evaluation of a low-carbon fisheries production by marine ranching in Daya Bay. Journal of Agro-Environment Science, 2011, 30(11): 2346-2352.] | |
[31] |
孙康, 崔茜茜, 苏子晓, 等. 中国海水养殖碳汇经济价值时空演化及影响因素分析. 地理研究, 2020, 39(11): 2508-2520.
doi: 10.11821/dlyj020190731 |
[ SUN K, CUI Q Q, SU Z X, et al. Spatio-temporal evolution and influencing factors of the economic value for mariculture carbon sinks in China. Geographical Research, 2020, 39(11): 2508-2520.]
doi: 10.11821/dlyj020190731 |
|
[32] | 李忠义, 林群, 戴芳群, 等. 主成分分析对黄海6种主要饵料鱼类的质量分析评价. 渔业科学进展, 2009, 30(5): 64-68. |
[ LI Z Y, LIN Q, DAI F Q, et al. Food quality analysis of some forge fish in Yellow Sea with principal component method. Progress in Fishery Sciences, 2009, 30(5): 64-68.] | |
[33] |
TANG Q S, ZHANG J H, FANG J G. Shellfish and seaweed mariculture increase atmospheric CO2 absorption by coastal ecosystems. Marine Ecology Progress Series, 2011, 424: 97-104.
doi: 10.3354/meps08979 |
[34] |
OLIVIER A S, JONES L, VAY L L, et al. A global review of the ecosystem services provided by bivalve aquaculture. Reviews in Aquaculture, 2020, 12(1): 3-25.
doi: 10.1111/raq.12301 |
[35] | 高蜜, 吴星, KLERKS P L, 等. 葫芦岛海产品重金属含量及健康风险分析. 生态学杂志, 2016, 35(1): 205-211. |
[ GAO M, WU X, KLERKS P L, et al. Metal levels in seafood of the Huludao Coast and associated health risks. Chinese Journal of Ecology, 2016, 35(1): 205-211.] | |
[36] | 高文华, 杜永芬, 王丹丹, 等. 福建罗源湾潮间带沉积物重金属含量空间分布及其环境质量影响. 环境科学, 2012, 33(9): 3097-3103. |
[ GAO W H, DU Y F, WANG D D, et al. Distribution patterns of heavy metals in surficial sediment and their influence on the environment quality of the intertidal flat of Luoyuan Bay, Fujian Coast. Environmental Science, 2012, 33(9): 3097-3103.] |
[1] | 徐涛, 赵敏娟, 乔丹, 史恒通. 外部性视角下的节水灌溉技术补偿标准核算——基于选择实验法[J]. 自然资源学报, 2018, 33(7): 1116-1128. |
[2] | 孙晶晶, 赵凯, 曹慧, 牛影影. 我国耕地保护经济补偿分区及其补偿额度测算——基于省级耕地-经济协调性视角[J]. 自然资源学报, 2018, 33(6): 1003-1017. |
[3] | 韦惠兰, 周夏伟. 沙区沙化土地封禁保护补偿标准的估算——最小数据方法在甘肃省民勤县的运用[J]. 自然资源学报, 2018, 33(4): 600-608. |
[4] | 马永喜, 王娟丽, 王晋. 基于生态环境产权界定的流域生态补偿标准研究[J]. 自然资源学报, 2017, 32(8): 1325-1336. |
[5] | 王正淑, 王继军, 刘佳. 基于碳汇的县南沟流域退耕林地补偿标准研究[J]. 自然资源学报, 2016, 31(5): 779-788. |
[6] | 肖建红, 王敏, 刘娟, 张然. 基于生态标签制度的海洋生态产品生态补偿标准区域差异化研究[J]. 自然资源学报, 2016, 31(3): 402-412. |
[7] | 韦惠兰, 宗鑫. 禁牧草地补偿标准问题研究——基于最小数据方法在玛曲县的运用[J]. 自然资源学报, 2016, 31(1): 28-38. |
[8] | 王敏, 肖建红, 于庆东, 刘娟. 水库大坝建设生态补偿标准研究——以三峡工程为例[J]. 自然资源学报, 2015, 30(1): 37-49. |
[9] | 冯颖, 姚顺波, 李晟. 基于EDM的农业节水技术补偿[J]. 自然资源学报, 2013, 28(4): 705-712. |
[10] | 乔旭宁, 杨永菊, 杨德刚, 李成林. 流域生态补偿标准的确定——以渭干河流域为例[J]. 自然资源学报, 2012, (10): 1666-1676. |
[11] | 王蕾, 苏杨, 崔国发. 自然保护区生态补偿定量方案研究——基于“虚拟地”计算方法[J]. 自然资源学报, 2011, 26(1): 34-47. |
[12] | 苑全治, 郝晋珉, 张玲俐, 王博祺, 龙鑫. 基于外部性理论的区域耕地保护补偿机制研究——以山东省潍坊市为例[J]. 自然资源学报, 2010, 25(4): 529-538. |
[13] | 秦艳红, 康慕谊. 国内外生态补偿现状及其完善措施[J]. 自然资源学报, 2007, 22(4): 557-567. |
|