自然资源学报 ›› 2022, Vol. 37 ›› Issue (3): 816-828.doi: 10.31497/zrzyxb.20220317
• 其他研究论文 • 上一篇
杨泽龙1(), 李艳忠1, 梁康2, 星寅聪1, 李超凡3(
), 马燮铫1, 韩越1
收稿日期:
2021-02-18
修回日期:
2021-04-29
出版日期:
2022-03-28
发布日期:
2022-05-28
通讯作者:
李超凡(1987- ),男,山东临沂人,博士,讲师,主要从事水热平衡以及3S技术应用研究。E-mail: lcf@nuist.edu.cn作者简介:
杨泽龙(2000- ),男,河北沧州人,硕士,主要从事水文气象研究。E-mail: zelong_Yang@outlook.com
基金资助:
YANG Ze-long1(), LI Yan-zhong1, LIANG Kang2, XING Yin-cong1, LI Chao-fan3(
), MA Xie-yao1, HAN Yue1
Received:
2021-02-18
Revised:
2021-04-29
Online:
2022-03-28
Published:
2022-05-28
摘要:
植被变化可通过改变下垫面条件的方式,调节植被蒸腾与土壤蒸发的分配比例,进而影响区域乃至全球水循环过程。自20世纪90年代以来,我国开展了大规模的植被恢复工程,全国植被覆盖度得到了极大提高,其中尤以黄河中游最为显著。以黄河中游6个典型植被恢复流域为研究对象,利用PML_V2模型和水文气象数据,验证了该模型模拟植被快速变化环境下的蒸散性能,并分析了2003—2018年间植被恢复工程背景下,黄河中游蒸散发(ET)及其组分(植被蒸腾Ec,截留蒸发Ei,土壤蒸发Es)的时空变化格局。结果表明:(1)对比流域水量平衡ET与PML模型结果,发现该模型在黄河中游具有较好的适用性(NSE >0.6)。(2)Ec对ET的分布格局起着主导作用,蒸散发及其组分的空间格局由夏季风作用下的植被空间分布所控制。Ec与ET的空间分布格局较为相似,Es与其相反。ET、Ec、Ei均呈显著增加趋势,Es则呈显著减小趋势,尤以流域中下游最为明显。(3)植被恢复背景下,黄河中游典型流域的蒸散发及其组分发生了明显的变化。相较于所在流域,流域中植被恢复区ET、Ec、Es、Ei分别偏高2.20%、5.86%、0.86%、7.44%,速率分别偏高-0.51 mm/a、0.55 mm/a、-1.11 mm/a、0.05 mm/a。
杨泽龙, 李艳忠, 梁康, 星寅聪, 李超凡, 马燮铫, 韩越. 植被恢复背景下黄河中游及6个典型流域蒸散发及其组分变化格局[J]. 自然资源学报, 2022, 37(3): 816-828.
YANG Ze-long, LI Yan-zhong, LIANG Kang, XING Yin-cong, LI Chao-fan, MA Xie-yao, HAN Yue. Variation patterns of evapotranspiration and its components in the Middle Yellow River and six typical basins under the background of vegetation restoration[J]. JOURNAL OF NATURAL RESOURCES, 2022, 37(3): 816-828.
[1] |
LIAN X, PIAO S, HUNTINGFORD C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018,8(7):640-646.
doi: 10.1038/s41558-018-0207-9 |
[2] |
YANG W, LONG D, BAI P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. Journal of Hydrology, 2019,570:201-219.
doi: 10.1016/j.jhydrol.2018.12.055 |
[3] |
LIANG W, BAI D, WANG F Y, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau. Water Resources Research, 2015,51(8):6500-6519.
doi: 10.1002/2014WR016589 |
[4] |
CHEN Y P, WANG K B, LIN Y S, et al. Balancing green and grain trade. Nature Geoscience, 2015,8(10):739-741.
doi: 10.1038/ngeo2544 |
[5] |
JUNG M, REICHSTEIN M, CIAIS P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 2010,467(7318):951-954.
doi: 10.1038/nature09396 |
[6] | 钱虹. 城市化进程中土地利用变化对蒸散的影响模拟. 南京: 南京信息工程大学, 2015. |
[ QIAN H. Simulation of the effect of land use change on evapotranspiration during urbanization. Nanjing: Nanjing University of Information Science & Technology, 2015.] | |
[7] | BRUTSAERT W, PARLANGE M B. Hydrologic cycle explains the evaporation paradox. Nature: International weekly Journal of Science, 1998,396(6706):30. |
[8] |
ZHANG S L, YANG H B, YANG D W, et al. Quantifying the effect of vegetation change on the regional water balance within the Budyko framework. Geophysical Research Letters, 2016,43(3):1140-1148.
doi: 10.1002/grl.v43.3 |
[9] |
BARBOUR M M, HUNT J E, WALCROFT A S, et al. Components of ecosystem evaporation in a temperate coniferous rainforest, with canopy transpiration scaled using sapwood density. New Phytologist, 2005,165(2):549-558.
doi: 10.1111/nph.2005.165.issue-2 |
[10] |
CALDER I R, HALL R L, BASTABLE H G. The impact of land use change on water resources in sub-Sabaran Africa: A modeling study of Lake Malawi. Journal of Hydrology, 1995,170:63-135.
doi: 10.1016/0022-1694(95)02691-H |
[11] | 张晓明, 曹文洪, 余新晓, 等. 黄土丘陵沟壑区典型流域土地利用/覆被变化的径流调节效应. 水利学报, 2009,40(6):641-650. |
[ ZHANG X M, CAO W H, YU X X, et al. Effect of LUCC on runoff regulation in watershed in loess gullied-hilly region of China. Journal of Hydraulic Engineering, 2009,40(6):641-650.] | |
[12] | 魏晓华, 李文华, 周国逸, 等. 森林与径流关系: 一致性和复杂性. 自然资源学报, 2005,20(5):761-770. |
[ WEI X H, LI W H, ZHOU G Y, et al. Forests and stream flow: Consistence and complexity. Journal of Natural Resources, 2005,20(5):761-770.] | |
[13] | 赵跃中, 穆兴民, 严宝文, 等. 延河流域植被恢复对径流泥沙的影响. 泥沙研究, 2014, (4):67-73. |
[ ZHAO Y Z, MU X M, YAN B W, et al. Influence of vegetation restoration on runoff and sediment of Yanhe Basin. Journal of Sediment Research, 2014, (4):67-73.] | |
[14] | 张淑兰. 土地利用和气候变化对流域水文过程影响的定量评价. 北京: 中国林业科学研究院, 2011. |
[ ZHANG S L. The assessment of impact of land use change and climate variability on hydrological process in basin. Beijing: Chinese Academy of Forestry, 2011.] | |
[15] | 杜琦. 山西省汾河流域植被恢复对蒸散发的影响. 人民珠江, 2018,39(1):10-12, 39. |
[ DU Q. Effects of vegetation restoration on evapotranspiration in Fenhe River Basin of Shanxi province. Pearl River, 2018,39(1):10-12, 39.] | |
[16] | 党素珍, 闫双荣, 董国涛, 等. 2016年黄河十大孔兑及河龙区间降水特性分析. 人民黄河, 2019,41(3):11-15. |
[ DANG S Z, YAN S R, DONG G T, et al. Analysis of precipitation characteristics ten tributaries and Hekouzhen-Longmen Section of the Yellow River in 2016. Yellow River, 2019,41(3):11-15.] | |
[17] | 武荣, 陈高峰, 张建兴. 黄河中游河口—龙门区间水沙变化特征分析. 中国沙漠, 2010,30(1):210-216. |
[ WU R, CHEN G F, ZHANG J X. Changes of runoff and sediments in Hekou-Longmen Section of the Middle Yellow River. Journal of Desert Research, 2010,30(1):210-216.] | |
[18] | 张含玉, 方怒放, 史志华. 黄土高原植被覆盖时空变化及其对气候因子的响应. 生态学报, 2016,36(13):3960-3968. |
[ ZHANG H Y, FANG N F, SHI Z H. Spatio-temporal patterns for the NDVI and its responses to climatic factors in the Loess Plateau, China. Acta ecologica sinica, 2016,36(13):3960-3968.] | |
[19] | 董镱, 尹冬勤, 李渊, 等. 黄土高原植被的时空变化及其驱动力分析研究. 中国农业大学学报, 2020,25(8):60-131. |
[ DONG Y, YIN D Q, LI Y, et al. Spatio-temporal patterns of vegetation change and driving forces in the Loess Plateau. Journal of China Agricultural University, 2020,25(8):60-131.] | |
[20] | 张宝庆, 邵蕊, 赵西宁, 等. 大规模植被恢复对黄河中游生态水文过程的影响. 应用基础与工程科学学报, 2020,28(3):594-606. |
[ ZHANG B Q, SHAO R, ZHAO X N, et al. Effects of large-scale vegetation restoration on eco-hydrological processes over the Loess Plateau, China. Journal of Basic Science and Engineering, 2020,28(3):594-606.] | |
[21] | 宋凤军. 皇甫川流域植被减水减沙效应的模拟研究. 杨凌: 西北农林科技大学, 2013. |
[ SONG F J. Research on runoff and sendiment control benefits of vegetation measures in Huangfuchuan Watershed. Yangling: Northwest A&F University, 2013.] | |
[22] | 尹国康. 黄河中游多沙粗沙区水沙变化原因分析. 地理学报, 1998, 53(2): 80-83, 85-89. |
[ YIN G K. An analysis on the causes of variations of runoff and sediment yield in the sandy and coarse sediment region of the Middle Yellow River. Acta Geographica Sinica, 1998, 53(2): 80-83, 85-89.] | |
[23] | 赵广举, 穆兴民, 田鹏, 等. 近60年黄河中游水沙变化趋势及其影响因素分析. 资源科学, 2012,34(6):1070-1078. |
[ ZHAO G J, MU X M, TIAN P, et al. The variation trend of streamflow and sediment flux in the Middle Reaches of Yellow River over the past 60 years and the influencing factors. Resources Science, 2012,34(6):1070-1078.] | |
[24] | 高照良, 付艳玲, 张建军, 等. 近50年黄河中游流域水沙过程及对退耕的响应. 农业工程学报, 2013,29(6):99-105. |
[ GAO Z L, FU Y L, ZHANG J J, et al. Responses of streamflow and sediment load to vegetation restoration in catchments on the Loess Plateau. Transactions of the CSAE, 2013,29(6):99-105.] | |
[25] |
ZHANG Y Q, KONG D D, GAN R, et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sensing of Environment, 2019,222:165-182.
doi: 10.1016/j.rse.2018.12.031 |
[26] | 刘昌明, 李艳忠, 刘小莽, 等. 黄河中游植被变化对水量转化的影响分析. 人民黄河, 2016,38(10):7-12. |
[ LIU C M, LI Y Z, LIU X M, et al. Impact of vegetation change on water transformation in the Middle Yellow River. Yellow River, 2016,38(10):7-12.] | |
[27] |
BAI P, LIU X M, ZHANG Y Q, et al. Incorporating vegetation dynamics noticeably improved performance of hydrological model under vegetation greening. Science of the Total Environment, 2018,643:610-622.
doi: 10.1016/j.scitotenv.2018.06.233 |
[28] |
ALBANO A M, RAPP P E, PASSAMANTE A. The two-dimensional Kolmogorov-Smirnov test. Physical Review E, 1995,52:196-206.
doi: 10.1103/PhysRevE.52.196 |
[29] | 姜艳阳, 王文, 周正昊. MODIS MOD16蒸散发产品在中国流域的质量评估. 自然资源学报, 2017,32(3):517-528. |
[ JIANG Y Y, WANG W, ZHOU Z H. Evaluation of MODIS MOD16 evaportranspiration product in Chinese river basins. Journal of Natural Resources, 2017,32(3):517-528.] | |
[30] |
CHEN G S, NOTARO M, LIU Z Y, et al. Simulated local and remote biophysical effects of afforestation over the Southeast United States in boreal summer. Journal of Climate, 2012,25(13):4511-4522.
doi: 10.1175/JCLI-D-11-00317.1 |
[31] |
胡珊珊, 郑红星, 刘昌明, 等. 气候变化和人类活动对白洋淀上游水源区径流的影响. 地理学报, 2012,67(1):62-70.
doi: 10.11821/xb201201007 |
[ HU S S, ZHENG H X, LIU C M, et al. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. Acta Geographica Sinica, 2012,67(1):62-70.] | |
[32] |
BAI P, LIU X, Y ZHANG, et al. Assessing the impacts of vegetation greenness change on evapotranspiration and water yield in China. Water Resources Research, 2020,56(10): e2019WR027019, Doi: https://doi.org/10.1029/2019WR027019.
doi: https://doi.org/10.1029/2019WR027019 |
[33] |
ZHANG Y Q, PENA-ARANCIBIA J L, MCVICAR T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. SCI REP-UK, 2016,6:19124, Doi: https://doi.org/10.1038/srep19124.
doi: https://doi.org/10.1038/srep19124 |
[34] | 孙兆峰, 王双银, 刘晶, 等. 秃尾河流域径流衰减驱动力因子分析. 自然资源学报, 2017,32(2):310-320. |
[ SUN Z F, WANG S Y, LIU J, et al. Driving force analysis of runoff attenuation in Tuwei River Basin. Journal of Natural Resources, 2017,32(2):310-320.] | |
[35] |
DUAN L X, HUANG M B, ZHANG L D. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China. Journal of Hydrology, 2016,537:356-366.
doi: 10.1016/j.jhydrol.2016.03.057 |
[36] | 莫兴国, 林忠辉, 刘苏峡. 气候变化对无定河流域生态水文过程的影响. 生态学报, 2007,27(6):4999-5007. |
[ MO X G, LIN Z H, LIU S X. Climate change impacts on the ecohydrological processes in the Wuding River Basin. Acta Ecologica Sinica, 2007,27(6):4999-5007.] |
[1] | 王婷, 李双双, 延军平, 何锦屏. 基于ENSO发展过程的中国夏季降水时空变化特征[J]. 自然资源学报, 2022, 37(3): 803-815. |
[2] | 曹永强, 路洁, 冯兴兴. 辽西北春玉米旱灾灾损风险区划[J]. 自然资源学报, 2021, 36(5): 1346-1358. |
[3] | 赵雪雁, 杜昱璇, 李花, 王伟军. 黄河中游城镇化与生态系统服务耦合关系的时空变化[J]. 自然资源学报, 2021, 36(1): 131-147. |
[4] | 刘晶晶, 王静, 戴建旺, 翟天林, 李泽慧. 黄河流域县域尺度生态系统服务供给和需求核算及时空变异[J]. 自然资源学报, 2021, 36(1): 148-161. |
[5] | 邵志江, 郑斌, 汪涛. 永定河上游主要河流地表水水质时空变化特征[J]. 自然资源学报, 2020, 35(6): 1338-1347. |
[6] | 汪言在, 董一帆, 苏正安. 基于土地利用与植被恢复情景的土壤侵蚀演变特征[J]. 自然资源学报, 2020, 35(6): 1369-1380. |
[7] | 陈卓鑫, 王文龙, 郭明明, 王天超, 郭文召, 王文鑫, 康宏亮, 杨波, 赵满. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响[J]. 自然资源学报, 2020, 35(2): 387-398. |
[8] | 邱冬冬, 闫家国, 张树岩, 左佃龙, 刘泽正, 汪方芳, 王青, 崔保山. 滨海湿地退化区鸟类刨坑觅食行为促进植被的恢复[J]. 自然资源学报, 2020, 35(2): 449-459. |
[9] | 湛东升, 吴倩倩, 余建辉, 张文忠, 张娟锋. 中国资源型城市房价时空变化与影响因素分析[J]. 自然资源学报, 2020, 35(12): 2888-2900. |
[10] | 王楠, 游庆龙, 刘菊菊. 1979-2014年中国地面风速的长期变化趋势[J]. 自然资源学报, 2019, 34(7): 1531-1542. |
[11] | 张彪, 李庆旭, 王爽, 谢高地. 京津风沙源区防风固沙功能的时空变化及其区域差异[J]. 自然资源学报, 2019, 34(5): 1041-1053. |
[12] | 李维杰, 王建力. 太行山脉不同量级降雨侵蚀力时空变化特征[J]. 自然资源学报, 2019, 34(4): 785-801. |
[13] | 梁鑫源, 李阳兵. 三峡库区“耕—果”转换时空变化特征及其启示——以草堂溪流域为例[J]. 自然资源学报, 2019, 34(2): 385-399. |
[14] | 何改丽, 李加林, 刘永超, 史小丽, 马静武, 浦瑞良, 郭乾东, 冯佰香, 黄日鹏. 1985-2015年美国坦帕湾流域土地开发利用强度时空变化分析[J]. 自然资源学报, 2019, 34(1): 66-79. |
[15] | 张学梅, 王自奎, 沈禹颖, 杨惠敏. 基于临近台站气象数据的参考作物蒸散量估算方法[J]. 自然资源学报, 2019, 34(1): 179-190. |
|