自然资源学报 ›› 2022, Vol. 37 ›› Issue (3): 753-768.doi: 10.31497/zrzyxb.20220313
收稿日期:
2021-02-08
修回日期:
2021-08-18
出版日期:
2022-03-28
发布日期:
2022-05-28
通讯作者:
杨红强(1971- ),男,陕西渭南人,博士,教授,博士生导师,研究方向为气候变化与林业碳科学。E-mail: yhqnfu@aliyun.com作者简介:
余智涵(1998- ),男,江苏丹阳人,博士研究生,研究方向为林产品碳循环。E-mail: yuzhihan@njfu.edu.cn
基金资助:
YU Zhi-han1,2(), NING Zhuo1,2, YANG Hong-qiang1,2,3(
)
Received:
2021-02-08
Revised:
2021-08-18
Online:
2022-03-28
Published:
2022-05-28
摘要:
发展林业碳汇是应对全球气候变化及实现中国2060年碳中和的重要举措。基于改进的Faustmann-Hartman模型,以中国南方浙江、福建和江西三个省份杉木人工林为研究对象,使用时间序列模型拟合并预测中国碳排放权交易市场的碳汇价格,通过蒙特卡洛模拟确定最优轮伐期及碳汇收益。研究结果表明:(1)依次纳入木材收益、地上生物量碳汇收益和死亡有机质碳汇收益时,杉木人工林的最优轮伐期分别为21.85年、22.98年和22.88年;(2)上述三种情景下,林地期望价值的净现值分别为20408.20元/hm2、24587.29元/hm2和28101.11元/hm2;(3)全面考虑包含死亡有机质碳库在内的林业碳汇效益,能够稳定提高林地所有者收益约7.02%~21.61%。此外,应进一步考虑多轮伐期下税收政策及自然风险等因素对碳汇营林的影响,这是确定最优轮伐期和碳汇收益后续研究值得重视的问题。
余智涵, 宁卓, 杨红强. 随机价格下杉木人工林的碳汇收益及最优轮伐期确定[J]. 自然资源学报, 2022, 37(3): 753-768.
YU Zhi-han, NING Zhuo, YANG Hong-qiang. Carbon sequestration benefit and optimal rotation period determination of Cunninghamia lanceolata plantation under stochastic price[J]. JOURNAL OF NATURAL RESOURCES, 2022, 37(3): 753-768.
[1] |
PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world's forests. Science, 2011,333(6045):988-993.
doi: 10.1126/science.1201609 |
[2] | 戴尔阜, 汪晓帆, 朱建佳, 等. 采伐与人工更新对红壤丘陵区森林面积和地上生物量的影响模拟: 以会同县磨哨林场为例. 自然资源学报, 2020,35(12):2995-3006. |
[ DAI E F, WANG X F, ZHU J J, et al. Modeling the long-term impacts of harvest and artificial regeneration on forest area and aboveground biomass in Red Soil Hilly Region: A case study in Moshao forest farm of Huitong county. Journal of Natural Resources, 2020,35(12):2995-3006.] | |
[3] |
HARRIS N L, GIBBS D A, BACCINI A, et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021,11(3):234-240.
doi: 10.1038/s41558-020-00976-6 |
[4] | 薛龙飞, 罗小锋, 李兆亮, 等. 中国森林碳汇的空间溢出效应与影响因素: 基于大陆31个省(市、区)森林资源清查数据的空间计量分析. 自然资源学报, 2017,32(10):1744-1754. |
[ XUE L F, LUO X F, LI Z L, et al. Spatial spillover effects and influencing factors of forest carbon sink in China: Spatial econometric analysis based on forest resources inventory in 31 provinces of the mainland of China. Journal of Natural Resources, 2017,32(10):1744-1754.] | |
[5] | 徐伟义, 金晓斌, 杨绪红, 等. 中国森林植被生物量空间网格化估计. 自然资源学报, 2018,33(10):1725-1741. |
[ XU W Y, JIN X B, YANG X H, et al. The estimation of forest vegetation biomass in China in spatial grid. Journal of Natural Resources, 2018,33(10):1725-1741.] | |
[6] | 张煜星, 王雪军. 全国森林蓄积生物量模型建立和碳变化研究. 中国科学: 生命科学, 2021,51(2):199-214. |
[ ZHANG Y X, WANG X J. Study on forest volume-to-biomass modeling and carbon storage dynamics in China. Scientia Sinica Vitae, 2021,51(2):199-214.] | |
[7] | 张蓉, 孟兵站. 我国林业碳汇项目开发与参与碳市场交易途径分析. 林业建设, 2020, (5):49-53. |
[ ZHANG R, MENG B Z. Analysis on the development of forestry carbon sequestration project and the way to participate in carbon market trade in China. Forestry Construction, 2020, (5):49-53.] | |
[8] | 郭蕾, 赵方芳. 我国碳排放权交易市场活跃度研究: 基于碳价时间序列的测算. 价格理论与实践, 2020, (7):98-101, 179. |
[ GUO L, ZHAO F F. Research on the active degree of carbon emission trading market in China: Calculation based on carbon price time series. Price: Theory & Practice, 2020, (7):98-101, 179.] | |
[9] | 张轲, 武曙红. 林业行业纳入中国碳排放权交易制度的可行性研究. 中南林业科技大学学报: 社会科学版, 2016,10(1):42-47. |
[ ZHANG K, WU S H. A feasibility study on carbon emission trading system included by the forestry sector in China. Journal of Central South University of Forestry & Technology: Social Sciences, 2016,10(1):42-47.] | |
[10] | 张楠, 宁卓, 杨红强. 弗斯曼模型及其广义改进: 基于林地期望值评估方法学演进. 林业经济, 2020,42(10):3-15. |
[ ZHANG N, NING Z, YANG H Q. Faustmann model and its generalization: Methodology evolution based on evaluation of forestland expectation value. Forestry Economics, 2020,42(10):3-15.] | |
[11] | FAUSTMANN M. Calculation of the value which forest land and immature stands possess for forestry. Journal of Forest Economics, 1995,1:7-44. |
[12] |
HARTMAN R. The harvesting decision when a standing forest has value. Economic Inquiry, 1976,14(1):52-58.
doi: 10.1111/ecin.1976.14.issue-1 |
[13] | 巢林, 刘艳艳, 洪伟, 等. 碳汇木材复合经营对杉木人工林经济成熟龄及现值收益的影响. 福建农林大学学报: 自然科学版, 2016,45(4):409-419. |
[ CHAO L, LIU Y Y, HONG W, et al. Effect of combined carbon and timber management on net present value of economic maturity age in Cunninghamia lanceolata plantation. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2016,45(4):409-419.] | |
[14] |
PLANTINGA A J, BIRDSEY R A. Optimal forest stand management when benefits are derived from carbon. Natural Resource Modeling, 1994,8(4):373-387.
doi: 10.1111/nrm.1994.8.issue-4 |
[15] |
VAN KOOTEN G C, BINKLEY C S, DELCOURT G. Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. American Journal of Agricultural Economics, 1995,77(2):365-374.
doi: 10.2307/1243546 |
[16] |
ENGLIN J, CALLAWAY J M. Environmental impacts of sequestering carbon through forestation. Climatic Change, 1995,31(1):67-78.
doi: 10.1007/BF01092981 |
[17] |
OLSCHEWSKI R, BENITEZ P C. Optimizing joint production of timber and carbon sequestration of afforestation projects. Journal of Forest Economics, 2010,16(1):1-10.
doi: 10.1016/j.jfe.2009.03.002 |
[18] |
PRICE C, WILLIS R. The multiple effects of carbon values on optimal rotation. Journal of Forest Economics, 2011,17(3):298-306.
doi: 10.1016/j.jfe.2011.02.002 |
[19] |
SHRESTHA P, STAINBACK G A, DWIVEDI P, et al. Economic and life-cycle analysis of forest carbon sequestration and wood-based bioenergy offsets in the central hardwood forest region of united states. Journal of Sustainable Forestry, 2015,34(3):214-232.
doi: 10.1080/10549811.2014.980894 |
[20] | EKHOLM T. Optimal forest rotation under carbon pricing and forest damage risk. Forest Policy and Economics, 2020, 115, https://www.sciencedirect.com/science/article/pii/S1389934119304356. |
[21] |
CHANG S J. An economic analysis of forest taxation's impact on optimal rotation age. Land Economics, 1982,58(3):310-323.
doi: 10.2307/3145939 |
[22] |
CHANG S J. Forest property taxation under the generalized Faustmann formula. Forest Policy and Economics, 2018,88:38-45.
doi: 10.1016/j.forpol.2017.12.008 |
[23] |
REED W J. The effects of the risk of fire on the optimal rotation of a forest. Journal of Environmental Economics and Management, 1984,11(2):180-190.
doi: 10.1016/0095-0696(84)90016-0 |
[24] |
NING Z, SUN C Y. Forest management with wildfire risk, prescribed burning and diverse carbon policies. Forest Policy and Economics, 2017,75:95-102.
doi: 10.1016/j.forpol.2016.10.004 |
[25] | AMACHER G S, OLLIKAINEN M, KOSKELA E. Economics of Forest Resources. Cambridge: The MIT Press, 2009. |
[26] |
SAMUELSON P A. Economics of forestry in an evolving society. Economic Inquiry, 1976,14(4):466-492.
doi: 10.1111/ecin.1976.14.issue-4 |
[27] |
CLARKE H R, REED W J. The tree-cutting problem in a stochastic environment. Journal of Economic Dynamics and Control, 1989,13(4):569-595.
doi: 10.1016/0165-1889(89)90004-3 |
[28] |
THOMSON T A. Optimal forest rotation when stumpage prices follow a diffusion process. Land Economics, 1992,68(3):329-342.
doi: 10.2307/3146380 |
[29] |
CHLADNA Z. Determination of optimal rotation period under stochastic wood and carbon prices. Forest Policy and Economics, 2007,9(8):1031-1045.
doi: 10.1016/j.forpol.2006.09.005 |
[30] | PETRASEK S, PEREZ-GARCIA J, BARE B B. Valuing forestlands with stochastic timber and carbon prices. Annals of Operations Research, 2013,232:217-234. |
[31] | NING Z, SUN C. Carbon sequestration and biofuel production on forestland under three stochastic prices. Forest Policy and Economics, 2019, 109, https://www.sciencedirect.com/science/article/pii/S1389934119303879. |
[32] |
GUTRICH J, HOWARTH R B. Carbon sequestration and the optimal management of new hampshire timber stands. Ecological Economics, 2007,62(3-4):441-450.
doi: 10.1016/j.ecolecon.2006.07.005 |
[33] |
ASANTE P, ARMSTRONG G W, ADAMOWICZ W L. Carbon sequestration and the optimal forest harvest decision: A dynamic programming approach considering biomass and dead organic matter. Journal of Forest Economics, 2011,17(1):3-17.
doi: 10.1016/j.jfe.2010.07.001 |
[34] |
ASANTE P, ARMSTRONG G W. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: A comparative statics analysis. Journal of Forest Economics, 2012,18(2):145-156.
doi: 10.1016/j.jfe.2011.12.002 |
[35] | 沈月琴, 王小玲, 王枫, 等. 农户经营杉木林的碳汇供给及其影响因素. 中国人口·资源与环境, 2013,23(8):42-47. |
[ SHEN Y Q, WANG X L, WANG F, et al. Carbon sequestration supply and its influencing factors for farmers operating fir in Chinese southern collective forest zone. China Population, Resources and Environment, 2013,23(8):42-47.] | |
[36] | 周伟, 高岚. 森林碳汇收益的实证分析: 以广东省杉木林为例. 科技管理研究, 2015,35(2):219-223. |
[ ZHOU W, GAO L. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: Taking fir forest in Guangdong as an example. Science and Technology Management Research, 2015,35(2):219-223.] | |
[37] | 张晨, 杨仙子. 基于多频组合模型的中国区域碳市场价格预测. 系统工程理论与实践, 2016,36(12):3017-3025. |
[ ZHANG C, YANG X Z. Forecasting of China's regional carbon market price based on multi-frequency combined model. Systems Engineering: Theory & Practice, 2016,36(12):3017-3025.] | |
[38] | 李怒云, 冯晓明, 陆霁. 中国林业应对气候变化碳管理之路. 世界林业研究, 2013,26(2):1-7. |
[ LI N Y, FENG X M, LU J. Carbon management path of China forestry sector in addressing the climate change. World Forestry Research, 2013,26(2):1-7.] | |
[39] | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系. 中国环境管理, 2020,12(6):58-64. |
[ WANG C, ZHANG Y X. Implementation pathway and policy system of carbon neutrality vision. Chinese Journal of Environmental Management, 2020,12(6):58-64.] | |
[40] | 谢聪, 徐晋涛. 森林社会经济效益问题探讨. 世界林业研究, 2020,33(3):101-106. |
[ XIE C, XU J T. A discussion on forest socioeconomic benefit. World Forestry Research, 2020,33(3):101-106.] | |
[41] | 陈则生. 杉木人工林经济成熟龄的研究. 林业经济问题, 2010,30(1):22-26. |
[ CHEN Z S. The research on age at economic maturity of Chinese fir plantations. Isues of Forestry Economics, 2010,30(1):22-26.] | |
[42] |
FANG J, CHEN A, PENG C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001,292(5525):2320-2322.
doi: 10.1126/science.1058629 |
[43] | 苏伟. 中华人民共和国气候变化第二次国家信息通报. 北京: 中国经济出版社, 2013. |
[ SU W. The People's Republic of China Second National Communication on Climate Change. Beijing: China Economic Publishing House, 2013.] | |
[44] | BOX G E P, JENKINS G M, REINSEL G C. Time Series Analysis: Forecasting and Control, 4th Edition. Hoboken: John Wiley & Sons Publication Inc, 2008. |
[45] |
RAO B L S P. Conditional independence, conditional mixing and conditional association. Annals of the Institute of Statistical Mathematics, 2009,61(2):441-460.
doi: 10.1007/s10463-007-0152-2 |
[46] | 朱臻, 沈月琴, 张耀启, 等. 碳汇经营目标下的林地期望价值变化及碳供给: 基于杉木裸地造林假设研究. 林业科学, 2012,48(11):112-116. |
[ ZHU Z, SHEN Y Q, ZHANG Y Q, et al. Change of forestland expected value and carbon supply in the objective of carbon sequestration: Based on the Chinese fir plantation in bared land. Scientia Silvae Sinicae, 2012,48(11):112-116.] | |
[47] | 沈月琴, 王枫, 张耀启, 等. 中国南方杉木森林碳汇供给的经济分析. 林业科学, 2013,49(9):140-147. |
[ SHEN Y Q, WANG F, ZHANG Y Q, et al. Economic analysis of Chinese fir forest carbon sequestration supply in South China. Scientia Silvae Sinicae, 2013,49(9):140-147.] | |
[48] | 朱臻, 沈月琴, 吴伟光, 等. 碳汇目标下农户森林经营最优决策及碳汇供给能力: 基于浙江和江西两省调查. 生态学报, 2013,33(8):2577-2585. |
[ ZHU Z, SHEN Y Q, WU W G, et al. Household optimal forest management decision and carbon supply: Case from Zheiiang and Jiangxi provinces. Acta Ecologica Sinica, 2013,33(8):2577-2585.] | |
[49] | 王枫, 沈月琴, 朱臻, 等. 杉木碳汇的经济学分析: 基于浙江省的调查. 浙江农林大学学报, 2012,29(5):762-767. |
[ WANG F, SHEN Y Q, ZHU Z, et al. Economic analysis of Chinese fir forest carbon sequestration: Based on Zhejiang's survey. Journal of Zhejiang A & F University, 2012,29(5):762-767.] | |
[50] | 王周绪, 姜全飞. 中国林业行业基准贴现率研究. 林业经济, 2006, (6):39-44. |
[ WANG Z X, JIANG Q F. China forestry basic rate of discount. Forestry Economics, 2006, (6):39-44.] | |
[51] | 徐传洪. 不同林龄序列杉木人工林凋落物特征研究. 长沙: 中南林业科技大学, 2020. |
[ XU C H. Study on litter characteristics of Chinese fir plantation in different stand ages. Changsha: Central South University of Forestry and Technology, 2020.] | |
[52] | 周涛, 史培军, 贾根锁, 等. 中国森林生态系统碳周转时间的空间格局. 中国科学: 地球科学, 2010,40(5):632-644. |
[ ZHOU T, SHI P J, JIA G S, et al. Spatial patterns of ecosystem carbon residence time in Chinese forests. Science China: Earth Sciences, 2010,40(5):632-644.] | |
[53] | 蔡兆炜. 福建杉木人工林生物量模型研究. 北京: 北京林业大学, 2014. |
[ CAI Z W. A Study on biomass models of Cunninghamia lanceolata plantation in Fujian. Beijing: Beijing Forestry University, 2014.] | |
[54] |
NG S, PERRON P. Unit root tests in arma models with data-dependent methods for the selection of the truncation lag. Journal of the American Statistical Association, 1995,90(429):268-281.
doi: 10.1080/01621459.1995.10476510 |
[55] | 张世英, 许启发, 周红. 金融时间序列分析. 北京: 清华大学出版社, 2008. |
[ ZHANG S Y, XU Q F, ZHOU H. Analysis of Financial Time Series. Beijing, Tsinghua University Press, 2008.] | |
[56] |
LJUNG G M, BOX G E P. On a measure of lack of fit in time series models. Biometrika, 1978,65(2):297-303.
doi: 10.1093/biomet/65.2.297 |
[57] |
ZHOU W, GAO L. The impact of carbon trade on the management of short-rotation forest plantations. Forest Policy and Economics, 2016,62:30-35.
doi: 10.1016/j.forpol.2015.10.008 |
[1] | 朱臻, 沈月琴, 徐志刚, 吴伟光, 宁可, 王志强. 森林经营主体的碳汇供给潜力差异及影响因素研究[J]. 自然资源学报, 2014, 29(12): 2013-2022. |
[2] | 黄贤松, 吴承祯, 洪伟, 洪滔, 王艳霞. 杉木人工林碳收获预估技术研究[J]. 自然资源学报, 2013, 28(2): 349-359. |
[3] | 张昌顺, 范少辉, 谢高地. 闽北典型毛竹 (Phyllostachys edulis) 林土壤酶活性及其与土壤肥力的关系[J]. 自然资源学报, 2010, 25(2): 236-248. |
[4] | 杨玉盛, 陈光水, 谢锦升, 俞新妥. 不同收获与清林方式对杉木林养分的影响[J]. 自然资源学报, 2000, 15(2): 133-137. |
[5] | 杨玉盛, 邱仁辉, 俞新妥. 影响杉木人工林可持续经营因素探讨[J]. 自然资源学报, 1998, 13(1): 34-39. |
[6] | 林思祖, 林开敏, 吴擢溪. 炼山对杉木人工幼林养分流失影响的定量研究[J]. 自然资源学报, 1997, 12(3): 243-249. |
[7] | 杨玉盛, 何宗明, 马祥庆, 林开敏, 俞新妥. 论炼山对杉木人工林生态系统影响的利弊及对策[J]. 自然资源学报, 1997, 12(2): 153-159. |
[8] | 马祥庆, 俞新妥, 何智英, 杨玉盛, 刘爱琴, 林开敏. 不同林地清理方式对杉木幼林生态系统水土流失的影响[J]. 自然资源学报, 1996, 11(1): 33-40. |
[9] | 罗天祥, 温远光. 广西杉木人工林生产力水热优化模型[J]. 自然资源学报, 1996, 11(1): 56-65. |
[10] | 王本楠. 确定最优轮伐期的原则及数学模型[J]. 自然资源学报, 1989, 4(1): 79-86. |
[11] | 陈国南. 用迈阿密模型测算我国生物生产量的初步尝试[J]. 自然资源学报, 1987, 2(3): 270-278. |
|