自然资源学报 ›› 2021, Vol. 36 ›› Issue (10): 2507-2521.doi: 10.31497/zrzyxb.20211005
王晓峰1,2(), 符鑫鑫3, 楚冰洋3, 李月皓3, 延雨3, 冯晓明4
收稿日期:
2020-10-08
修回日期:
2021-02-07
出版日期:
2021-10-28
发布日期:
2021-12-28
作者简介:
王晓峰(1977- ),男,甘肃平凉人,博士,教授,主要从事生态遥感方面的教学与科研。E-mail: wangxf@chd.edu.cn
基金资助:
WANG Xiao-feng1,2(), FU Xin-xin3, CHU Bing-yang3, LI Yue-hao3, YAN Yu3, FENG Xiao-ming4
Received:
2020-10-08
Revised:
2021-02-07
Online:
2021-10-28
Published:
2021-12-28
摘要:
秦岭是我国重要的“中央水塔”,是南水北调的重要水源地。基于InVEST模型评估2000—2018年秦岭地区产水服务,分析其时空演变特征,利用相关性分析和地理加权回归方法(GWR)探究不同因素对秦岭地区产水服务变化的影响。结果表明:秦岭地区多年平均产水量为235.16 mm,19年间产水量呈现微弱下降趋势,产水量在空间上表现为由南部向北减少的特点。秦岭地区产水量波动程度和变化趋势都较弱,产水服务整体比较稳定。各因素对产水量的影响具有明显的空间异质性,降水主导的范围最大(33.18%),且集中分布于产水量较多的秦岭南侧。其次为NPP(17.90%)和实际蒸散量(16.71%),两者在中北部地区是主要影响因素。研究结果对促进区域生态安全和可持续发展具有一定的指导意义。
王晓峰, 符鑫鑫, 楚冰洋, 李月皓, 延雨, 冯晓明. 秦岭生态屏障产水服务时空演变特征及驱动要素[J]. 自然资源学报, 2021, 36(10): 2507-2521.
WANG Xiao-feng, FU Xin-xin, CHU Bing-yang, LI Yue-hao, YAN Yu, FENG Xiao-ming. Spatio-temporal variation of water yield and its driving factors in Qinling Mountains barrier region[J]. JOURNAL OF NATURAL RESOURCES, 2021, 36(10): 2507-2521.
表1
秦岭各流域平均海拔、降水、下垫面占比和产水量
流域 | 平均海拔/m | 平均降水/mm | 耕/林/草地占比/% | 平均产水量/mm |
---|---|---|---|---|
河源至玛曲 | 3742.05 | 687.28 | 0/6/90 | 141.15 |
大夏河与洮河 | 3153.08 | 613.09 | 11/35/51 | 77.65 |
渭河宝鸡峡以上 | 2084.54 | 564.90 | 31/24/42 | 57.06 |
渭河宝鸡峡至咸阳 | 1702.31 | 743.37 | 6/65/29 | 166.12 |
渭河咸阳至潼关 | 1371.40 | 699.94 | 18/41/39 | 85.87 |
龙门至三门峡干流区间 | 1083.33 | 653.91 | 20/49/31 | 95.23 |
三门峡至小浪底区间 | 878.91 | 596.95 | 23/36/40 | 59.14 |
伊洛河 | 882.27 | 718.47 | 32/45/19 | 149.02 |
小浪底至花园口干流区间 | 341.31 | 675.06 | 34/23/39 | 185.51 |
王蚌区间北岸 | 499.01 | 774.53 | 43/38/13 | 238.41 |
青衣江和岷江干流 | 3123.93 | 849.83 | 4/43/52 | 380.18 |
沱江 | 2061.77 | 1019.32 | 11/71/16 | 632.97 |
广元昭化以上 | 2032.98 | 653.49 | 20/36/42 | 93.18 |
涪江 | 2080.98 | 805.42 | 12/57/30 | 274.00 |
渠江 | 1134.33 | 1217.35 | 32/49/19 | 590.96 |
广元昭化以下干流 | 1322.71 | 983.36 | 23/56/20 | 401.45 |
宜宾至宜昌干流 | 1069.97 | 1069.20 | 21/68/10 | 459.57 |
丹江口以上 | 993.80 | 859.18 | 22/45/31 | 231.00 |
唐白河 | 536.05 | 892.00 | 29/59/8 | 288.21 |
丹江口以下干流 | 775.30 | 911.63 | 12/83/3 | 280.03 |
宜昌至武汉左岸 | 543.51 | 1057.67 | 14/80/3 | 438.51 |
表5
秦岭各流域驱动因素面积占比
流域 | 降水 | 蒸散量 | NDVI | NPP | 气压 | 辐射量 | 温度 | 风速 |
---|---|---|---|---|---|---|---|---|
河源至玛曲 | 2.75 | 0 | 0 | 79.16 | 0.00 | 18.09 | 0 | 0 |
大夏河与洮河 | 0 | 0 | 0 | 5.90 | 5.54 | 88.56 | 0 | 0 |
渭河宝鸡峡以上 | 0 | 0.22 | 0 | 0 | 23.61 | 61.81 | 14.36 | 0 |
渭河宝鸡峡至咸阳 | 0 | 99.56 | 0 | 0 | 0.44 | 0 | 0 | 0 |
渭河咸阳至潼关 | 0 | 62.16 | 0 | 0 | 0 | 0 | 0 | 37.84 |
龙门至三门峡干流区间 | 0 | 0 | 0 | 5.59 | 0 | 0 | 0 | 94.41 |
三门峡至小浪底区间 | 0 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 |
伊洛河 | 0 | 0 | 10.28 | 53.03 | 0 | 0 | 0 | 36.69 |
小浪底至花园口干流区间 | 0 | 0 | 100.00 | 0 | 0 | 0 | 0 | 0 |
王蚌区间北岸 | 0 | 0 | 69.68 | 30.18 | 0 | 0.14 | 0 | 0 |
青衣江和岷江干流 | 97.23 | 0 | 0 | 2.77 | 0 | 0. | 0 | 0 |
沱江 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
广元昭化以上 | 29.08 | 0.79 | 0 | 20.86 | 8.33 | 20.79 | 20.16 | 0 |
涪江 | 100.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
渠江 | 92.09 | 0 | 0 | 0 | 0 | 7.91 | 0 | 0 |
广元昭化以下干流 | 53.83 | 46.17 | 0 | 0 | 0 | 0 | 0 | 0 |
宜宾至宜昌干流 | 65.90 | 33.59 | 0 | 0 | 0 | 0.51 | 0 | 0 |
丹江口以上 | 33.63 | 36.76 | 0 | 22.50 | 0.42 | 0.10 | 0.05 | 6.53 |
唐白河 | 8.44 | 0 | 2.93 | 88.63 | 0 | 0 | 0 | 0 |
丹江口以下干流 | 70.31 | 0 | 0 | 29.69 | 0 | 0 | 0 | 0 |
宜昌至武汉左岸 | 98.37 | 1.63 | 0 | 0 | 0 | 0 | 0 | 0 |
[1] |
COSTANZA R, D'ARGE R, DE GROOT R, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387(6630):253-260.
doi: 10.1038/387253a0 |
[2] | Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Washington D.C.: Island Press, 2005. |
[3] | 傅伯杰, 刘世梁, 马克明. 生态系统综合评价的内容与方法. 生态学报, 2001, 21(11):1885-1892. |
[ FU B J, LIU S L, MA K M. The contents and methods of integrated ecosystem assessment (IEA). Acta Ecologica Sinica, 2001, 21(11):1885-1892.] | |
[4] |
戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析. 地理学报, 2020, 75(3):607-619.
doi: 10.11821/dlxb202003012 |
[ DAI E F, WANG Y H. Spatiotemporal and influencing factors analysis of water yield in the Hengduan Mountain region. Acta Geographica Sinica, 2020, 75(3):607-619.] | |
[5] |
PENG J, WANG A, LUO L W, et al. Spatial identification of conservation priority areas for urban ecological land: An approach based on water ecosystem services. Land Degradation & Development, 2019, 30(6):683-694.
doi: 10.1002/ldr.v30.6 |
[6] |
MILLY P C, DUNNE K A, VECCHIA A V. Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438(7066):347-350.
doi: 10.1038/nature04312 |
[7] | 吕一河, 胡健, 孙飞翔, 等. 水源涵养与水文调节: 和而不同的陆地生态系统水文服务. 生态学报, 2015, 35(15):5191-5196. |
[ LYU Y H, HU J, SUN F X, et al. Water retention and hydrological regulation: Harmony but not the same in terres trial hydrological ecosystem services. Acta Ecologica Sinica, 2015, 35(15):5191-5196.] | |
[8] |
FAN M, SHIBATA H. Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River Watershed, Northern Japan. Ecological Indicators, 2015, 50(21):79-89.
doi: 10.1016/j.ecolind.2014.11.003 |
[9] |
RONALD C, FRANCISCO E, DANIEL M L, et al. Analyzing trade-offs, synergies, and drivers among timber production, carbon sequestration, and water yield in pinus elliotii forests in Southeastern USA. Forests, 2014, 5(6):1409-1431.
doi: 10.3390/f5061409 |
[10] | 吴健, 李英花, 黄利亚, 等. 东北地区产水量时空分布格局及其驱动因素. 生态学杂志, 2017, 36(11):3216-3223. |
[ WU J, LI Y H, HUANG L Y, et al. Spatiotemporal variation of water yield and its driving factors in Northeast China. Chinese Journal of Ecology, 2017, 36(11):3216-3223.] | |
[11] | 孙小银, 郭洪伟, 廉丽姝, 等. 南四湖流域产水量空间格局与驱动因素分析. 自然资源学报, 2017, 32(4):669-679. |
[ SUN X Y, GUO H W, LIAN L S, et al. The spatial pattern of water yield and its driving factors in Nansi Lake Basin. Journal of Natural Resources, 2017, 32(4):669-679.] | |
[12] |
包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化. 地理研究, 2016, 35(4):664-676.
doi: 10.11821/dlyj201604006 |
[ BAO Y B, LI T, LIU H, et al. Spatial and temporal changes of water conservation of Loess Plateau in Northern Shaanxi province by InVEST model. Geographical Research, 2016, 35(4):664-676.] | |
[13] | 宁亚洲, 张福平, 冯起, 等. 秦岭水源涵养功能时空变化及其影响因素. 生态学杂志, 2020, 39(9):3080-3091. |
[ NING Y Z, ZHANG F P, FENG Q, et al. Temporal and spatial variation of water conservation function in Qinling Mountain and its influencing factors. Chinese Journal of Ecology, 2020, 39(9):3080-3091.] | |
[14] | BRUNSDON C, FOTHERINGHAM S, CHARLTON M. Geographically weighted regression. Journal of the Royal Statistical Society: Series D, 1998, 47(3):431-443. |
[15] |
HUANG Y, LEUNG Y. Analysing regional industrialisation in Jiangsu province using geographically weighted regression. Journal of Geographical Systems, 2002, 4(2):233-249.
doi: 10.1007/s101090200081 |
[16] |
侯文娟, 高江波, 戴尔阜, 等. 基于SWAT模型模拟乌江三岔河生态系统产流服务及其空间变异. 地理学报, 2018, 73(7):1268-1282.
doi: 10.11821/dlxb201807007 |
[ HOU W J, GAO J B, DAI E F, et al. The runoff generation simulation and its spatial variation analysis in Sanchahe Basin as the south source of Wujiang. Acta Geographica Sinica, 2018, 73(7):1268-1282.] | |
[17] | 耿甜伟, 陈海, 张行, 等. 基于GWR的陕西省生态系统服务价值时空演变特征及影响因素分析. 自然资源学报, 2020, 35(7):1714-1727. |
[ GENG T W, CHEN H, ZHANG X, et al. Spatiotemporal evolution of land ecosystem service value and its influencing factors in Shaanxi province based on GWR. Journal of Natural Resources, 2020, 35(7):1714-1727.] | |
[18] |
HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25(2):1965-1978.
doi: 10.1002/(ISSN)1097-0088 |
[19] | SHARP R, TALLIS H T, RICKETTS T, et al. InVEST 3.2.0 User's Guide. Stanford: The Natural Capital Project, 2015. |
[20] |
ZHANG L, DAWES W R, WALKER G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3):701-708.
doi: 10.1029/2000WR900325 |
[21] |
LYU N, SUN G, FENG X M, et al. Water yield responses to climate change and variability across the north-south transect of Eastern China (NSTEC). Journal of Hydrology, 2013, 481:96-105.
doi: 10.1016/j.jhydrol.2012.12.020 |
[22] |
ZHANG Y, LUO P P, ZHAO S F, et al. Control and remediation methods for eutrophic lakes in the past 30 years. Water Science and Technology, 2020, 81(6):1099-1113.
doi: 10.2166/wst.2020.218 |
[23] |
DENG S F, YANF T B, ZENG B, et al. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000-2011. Journal of Mountain Science, 2013, 10(6):1050-1062.
doi: 10.1007/s11629-013-2558-z |
[24] | 邓兴耀, 姚俊强, 刘志辉. 基于GIMMS NDVI的中亚干旱区植被覆盖时空变化. 干旱区研究, 2017, 34(1):10-19. |
[ DENG X Y, YAO J Q, LIU Z H. Spatiotemporal change of vegetation coverage in arid regions in Central Asia based on GIMMS NDVI. Arid Zone Research, 2017, 34(1):10-19.] | |
[25] | 马勇, 黄智洵. 长江中游城市群绿色发展指数测度及时空演变探析: 基于GWR模型. 生态环境学报, 2017, 26(5):794-807. |
[ MA Y, HUANG Z X. Study on spatial-temporal evolution and measurement of green development index of urban agglomerations in the middle reaches of Yangtze River: GWR model based. Ecology and Environmental Sciences, 2017, 26(5):794-807.] | |
[26] |
DU H B, MULLEY C. Relationship between transport accessibility and land value: Local model approach with geographically weighted regression. Transportation Research Record Journal of the Transportation Research Board, 2006, 1977(1):197-205.
doi: 10.1177/0361198106197700123 |
[27] | 曹晴, 郝振纯, 傅晓洁, 等. 1960—2017年中国极端气候要素时空变化分析. 人民黄河, 2020, 42(2):11-17. |
[ CAO Q, HAO Z C, FU X J, et al. Analysis of spatial-temporal changes of extreme climatic elements in China from 1960 to 2017. Yellow River, 2020, 42(2):11-17.] | |
[28] | 谢余初, 巩杰, 齐姗姗, 等. 基于InVEST模型的白龙江流域水源供给服务时空分异. 自然资源学报, 2017, 32(8):1337-1347. |
[ XIE Y C, GONG J, QI S S, et al. Spatio-temporal variation of water supply service in Bailong River Watershed based on InVEST model. Journal of Natural Resources, 2017, 32(8):1337-1347.] | |
[29] | 杨洁, 谢保鹏, 张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应. 应用生态学报, 2020, 31(8):2731-2739. |
[ YANG J, XIE B P, ZHANG D G. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model. Chinese Journal of Applied Ecology, 2020, 31(8):2731-2739.] | |
[30] | 李怡颖, 范继辉, 廖莹. 基于InVEST模型的张家口市水源涵养功能时空差异分析. 草业科学, 2020, 37(7):1313-1324. |
[ LI Y Y, FAN J H, LIAO Y. Analysis of spatial and temporal differences in water conservation function in Zhangjiakou based on the InVEST model. Pratacultural Science, 2020, 37(7):1313-1324.] | |
[31] | 柳冬青, 曹二佳, 张金茜, 等. 甘肃白龙江流域水源涵养服务时空格局及其影响因素. 自然资源学报, 2020, 35(7):1728-1743. |
[ LIU D Q, CAO E J, ZHANG J X, et al. Spatiotemporal pattern of water conservation and its influencing factors in Bailongjiang Watershed of Gansu. Journal of Natural Resources, 2020, 35(7):1728-1743.] | |
[32] |
IMHOFF M L, BOUNOUA L, DEFRIES R, et al. The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment, 2004, 89(4):434-443.
doi: 10.1016/j.rse.2003.10.015 |
[33] |
尹礼唱, 王晓峰, 张琨, 等. 国家屏障区生态系统服务权衡与协同. 地理研究, 2019, 38(9):2162-2172.
doi: 10.11821/dlyj020180578 |
[ YIN L C, WANG X F, ZHANG K, et al. Trade-offs and synergy between ecosystem services in National Barrier Zone. Geographical Research, 2019, 38(9):2162-2172.] | |
[34] |
陈心盟, 王晓峰, 冯晓明, 等. 青藏高原生态系统服务权衡与协同关系. 地理研究, 2021, 40(1):18-34.
doi: 10.11821/dlyj020200399 |
[ CHEN X M, WANG X F, FENG X M, et al. Ecosystem service trade-off and synergy on Qinghai-Tibet Plateau. Geographical Research, 2021, 40(1):18-34.] | |
[35] |
黄木易, 岳文泽, 方斌, 等. 1970—2015年大别山区生态服务价值尺度响应特征及地理探测机制. 地理学报, 2019, 74(9):1904-1920.
doi: 10.11821/dlxb201909015 |
[ HUANG M Y, YUE W Z, FANG B, et al. Scale response characteristics and geographic exploration mechanism of spatial differentiation of ecosystem service values in Dabie Mountain Area, Central China from 1970 to 2015. Acta Geographica Sinica, 2019, 74(9):1904-1920.] |
[1] | 申嘉澍, 李双成, 梁泽, 王玥瑶, 孙福月. 生态系统服务供需关系研究进展与趋势展望[J]. 自然资源学报, 2021, 36(8): 1909-1922. |
[2] | 胡其玉, 陈松林. 基于生态系统服务供需的厦漳泉地区生态网络空间优化[J]. 自然资源学报, 2021, 36(2): 342-355. |
[3] | 陈凡, 郭剑, 栗欣如, 李建平. 农业产业化经营项目空间分布及驱动因素分析——以京津冀地区为例[J]. 自然资源学报, 2021, 36(2): 513-524. |
[4] | 李文青, 赵雪雁, 杜昱璇, 马平易. 秦巴山区生态系统服务与居民福祉耦合关系的时空变化[J]. 自然资源学报, 2021, 36(10): 2522-2540. |
[5] | 赵雪雁, 杜昱璇, 李花, 王伟军. 黄河中游城镇化与生态系统服务耦合关系的时空变化[J]. 自然资源学报, 2021, 36(1): 131-147. |
[6] | 刘晶晶, 王静, 戴建旺, 翟天林, 李泽慧. 黄河流域县域尺度生态系统服务供给和需求核算及时空变异[J]. 自然资源学报, 2021, 36(1): 148-161. |
[7] | 谢丽霞, 白永平, 车磊, 乔富伟, 孙帅帅, 杨雪荻. 基于价值—风险的黄河上游生态功能区生态分区建设[J]. 自然资源学报, 2021, 36(1): 196-207. |
[8] | 阎晓, 涂建军. 黄河流域资源型城市生态效率时空演变及驱动因素[J]. 自然资源学报, 2021, 36(1): 223-239. |
[9] | 贾建辉, 陈建耀, 龙晓君, 陈记臣. 水电开发对河流生态系统服务的效应评估与时空变化特征分析——以武江干流为例[J]. 自然资源学报, 2020, 35(9): 2163-2176. |
[10] | 刘春芳, 王韦婷, 刘立程, 李鹏杰. 西北地区县域生态系统服务的供需匹配——以甘肃古浪县为例[J]. 自然资源学报, 2020, 35(9): 2177-2190. |
[11] | 郭付友, 佟连军, 仇方道, 许丽梦. 鲁南经济带城乡绿色发展效率时空分异及驱动因素识别[J]. 自然资源学报, 2020, 35(8): 1972-1985. |
[12] | 耿甜伟, 陈海, 张行, 史琴琴, 刘迪. 基于GWR的陕西省生态系统服务价值时空演变特征及影响因素分析[J]. 自然资源学报, 2020, 35(7): 1714-1727. |
[13] | 赵玉峰, 罗专溪, 于亚军, 陈迎辉, 张树刚, 张清华. 京津冀西北典型区域地下水位时空演变及驱动因素[J]. 自然资源学报, 2020, 35(6): 1301-1313. |
[14] | 燕守广, 李辉, 李海东, 张银龙. 基于土地利用与景观格局的生态保护红线生态系统健康评价方法——以南京市为例[J]. 自然资源学报, 2020, 35(5): 1109-1118. |
[15] | 张宇硕, 吴殿廷, 吕晓. 土地利用/覆盖变化对生态系统服务的影响:空间尺度视角的研究综述[J]. 自然资源学报, 2020, 35(5): 1172-1189. |
|