自然资源学报 ›› 2021, Vol. 36 ›› Issue (3): 771-782.doi: 10.31497/zrzyxb.20210317
邓金玲1(), 尹海伟2, 仇是2, 朱捷2, 陈佳宇1, 费凡2, 孔繁花1(
)
收稿日期:
2019-08-22
修回日期:
2019-11-25
出版日期:
2021-03-28
发布日期:
2021-05-28
通讯作者:
孔繁花
E-mail:gamlingdang@163.com;fanhuakong@163.com
作者简介:
邓金玲(1995- ),女,广东罗定人,硕士,研究方向为生态水文学。E-mail: 基金资助:
DENG Jin-ling1(), YIN Hai-wei2, QIU Shi2, ZHU Jie2, CHEN Jia-yu1, FEI Fan2, KONG Fan-hua1(
)
Received:
2019-08-22
Revised:
2019-11-25
Online:
2021-03-28
Published:
2021-05-28
Contact:
KONG Fan-hua
E-mail:gamlingdang@163.com;fanhuakong@163.com
摘要:
雨洪管理措施的应用可有效控制雨水径流量及其污染物,系统分析雨洪管理措施对径流及其污染物的影响有助于理解雨洪管理的水环境效应。本文基于Meta方法整理国内已发表的文献案例,通过提取雨洪管理措施的类型、应用尺度、降雨特征及径流量和污染物削减率等信息,综述了雨洪管理措施应用后径流量和污染物的变化。结果表明:(1)不同雨洪管理措施所产生的水环境效应存在差异,样本中屋顶绿化的径流削减能力最强,透水铺装的径流污染物削减效果最佳;(2)雨洪管理措施对水环境的影响具有尺度效应,大尺度区域内雨洪管理措施对径流量削减作用较弱,而小尺度区域内径流污染物削减作用较弱;(3)雨洪管理措施对径流量及其污染物的削减能力随降雨量增加呈下降趋势。结合案例数据,系统分析了雨洪管理措施在径流量及其污染物控制效果上的差异及成因,可为径流调控与污染治理等实践提供理论参考。
邓金玲, 尹海伟, 仇是, 朱捷, 陈佳宇, 费凡, 孔繁花. 雨洪管理措施的水环境效应差异——基于Meta的中国案例分析[J]. 自然资源学报, 2021, 36(3): 771-782.
DENG Jin-ling, YIN Hai-wei, QIU Shi, ZHU Jie, CHEN Jia-yu, FEI Fan, KONG Fan-hua. Water environmental response under varying implication of stormwater management measures: Based on cases in China[J]. JOURNAL OF NATURAL RESOURCES, 2021, 36(3): 771-782.
表1
样本文献获取信息描述"
编号 | 研究区描述 | 样本量/个 | 降雨类型 | 雨洪管理措施1 | 水环境效应2 |
---|---|---|---|---|---|
01[ | 北京市,12个1 m×1 m的屋顶绿化模块 | 9 | 自然降雨 | a | V |
02[ | 天津市,4个2 m×2 m×0.96 m的透水铺装土槽 | 8 | 模拟降雨 | d | V |
03[ | 扬州市,4 m×1 m的下凹绿地实验场地 | 48 | 模拟降雨 | e | V |
04[ | 嘉兴市,1 m×0.5 m的透水铺装实验装置 | 6 | 模拟降雨 | d | P |
05[ | 温岭市,汇水面积约1625 m2的低位绿地采样点 | 15 | 自然降雨 | e | V; P |
06[ | 上海市,5条2 m×0.4 m×0.6 m的植草沟 | 15 | 模拟降雨 | b | V |
07[ | 西安市,2个3 m×4 m×0.85 m的雨水花园 | 28 | 自然降雨 | f | V |
08[ | 深圳市,汇水面积为35 m2的道路区域采样点 | 20 | 自然降雨 | c; d | P |
09[ | 深圳市,2.4 m×1.2 m×0.6 m的下凹绿地实验装置 | 32 | 模拟降雨 | e | P |
10[ | 嘉兴市,0.5 m×0.5 m×1 m的透水铺装实验装置 | 12 | 模拟降雨 | d | P |
11[ | 北京市,25 m×2 m的试验植草沟 | 8 | 模拟降雨 | b | V |
12[ | 常州市,污水厂区1000 m×0.3 m×0.4 m的植草沟 | 12 | 自然降雨 | b | P |
13[ | 北京市,占地22.5 hm2公园区域内的汇水分区 | 9 | 自然降雨 | d; f | P |
14[ | 保定市,280 m2的径流场,配置有12 m2的滞留池 | 18 | 自然降雨 | c | P |
15[ | 北京市,10个0.3 m×0.3 m×0.7 m的生物滞留单元 | 3 | 模拟降雨 | c | P |
16[ | 天津市,3个0.61 m×0.61 m×0.85 m的渗透路面 | 18 | 模拟降雨 | d | V |
17[ | 北京市,直径1 m、高0.8 m的下凹式绿地实验装置 | 4 | 模拟降雨 | e | P |
18[ | 北京市,390 m2的汇流区,配置12 m2的雨水花园 | 18 | 自然降雨 | f | P |
19[ | 云南省,2个3 m×0.5 m×0.5 m的植草带试验装置 | 45 | 模拟降雨 | b | V; P |
20[ | 深圳市,9个1.5 m×1.2 m×0.3 m的植草沟试验槽 | 9 | 模拟降雨 | b | V |
21[ | 北京市,0.8 m×0.8 m×0.3 m的屋顶绿化试验装置 | 4 | 模拟降雨 | a | V |
22[ | 宜兴市,4.46 hm2的中心城区区域 | 6 | 设计降雨 | d | V |
23[ | 宜兴市,4.68 hm2的中心城区区域 | 15 | 设计降雨 | c | V; P |
24[ | 天津市,中心城区及环城四区内的9个子流域 | 36 | 设计降雨 | c; d | V |
25[ | 济南市,海绵城市试点区内5.66 km2的小流域 | 3 | 设计降雨 | a; d; e | V |
26[ | 广州市,荔湾区内43.29万m2的社区 | 90 | 设计降雨 | a; d; e | V; P |
27[ | 宜兴市,4.68 hm2的中心城区区域 | 30 | 设计降雨 | c; d; f | V; P |
28[ | 保定市,河南农业大学内占地2.02 hm2的研究区域 | 5 | 设计降雨 | d | V |
29[ | 南昌市,某廉租房区内约2 hm2的研究区域 | 22 | 设计降雨 | a; b; d; e | V; P |
30[ | 西安市,西安市某排水片区,面积约16.46 km2 | 15 | 设计降雨 | f | V; P |
31[ | 长汀县,汀州镇及大同镇部分地区,共19.77 km2 | 3 | 设计降雨 | d; e; g | V |
32[ | 北京市,海淀区一典型城市社区,面积约2.46 hm2 | 8 | 设计降雨 | c; d; e | V |
33[ | 深圳市,民治河流域,集雨面积为19.23 km2 | 15 | 设计降雨 | d; e | V |
34[ | 宜兴市,4.73 hm2的中心城区区域 | 20 | 设计降雨 | f | V; P |
35[ | 北京市,大红门排水片区,面积约130 km2 | 12 | 设计降雨 | a; d; f | V |
[1] | PALLA A, GNECCO I. Hydrologic modeling of low impact development systems at the urban catchment scale. Journal of Hydrology, 2015,528:361-368. |
[2] | MOGLEN G E. Hydrology and impervious areas. Journal of Hydrologic Engineering, 2009,14(4):303-304. |
[3] |
JACOBSON C R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. Journal of Environmental Management, 2011,92(6):1438-1448.
doi: 10.1016/j.jenvman.2011.01.018 pmid: 21334133 |
[4] | MORÁN-TEJEDA E, CEBALLOS-BARBANCHO A, LLORENTE-PINTO J M. Hydrological response of Mediterranean headwaters to climate oscillations and land-cover changes: The mountains of Duero River Basin (Central Spain). Global and Planetary Change, 2010,72(1):39-49. |
[5] | 刘昌明, 张永勇, 王中根, 等. 维护良性水循环的城镇化LID模式: 海绵城市规划方法与技术初步探讨. 自然资源学报, 2016,31(5):719-731. |
[ LIU C M, ZHANG Y Y, WANG Z G, et al. The LID pattern for maintaining virtuous water cycle in urbanized area: A preliminary study of planning and techniques for sponge city. Journal of Natural Resources, 2016,31(5):719-731.] | |
[6] | KONG F, BAN Y, YIN H, et al. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environmental Modelling & Software, 2017,95:132-142. |
[7] | FLETCHER T D, SHUSTER W, HUNT W F, et al. SUDS, LID, BMPs, WSUD and more: The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 2015,12(7):525-542. |
[8] | PYKE C, WARREN M P, JOHNSON T, et al. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landscape and Urban Planning, 2011,103(2):166-173. |
[9] | NEWCOMER M E, GURDAK J J, SKLAR L S, et al. Urban recharge beneath low impact development and effects of climate variability and change. Water Resources Research, 2014,50(2):1716-1734. |
[10] | ZELLNER M, MASSEY D, MINOR E, et al. Exploring the effects of green infrastructure placement on neighborhood-level flooding via spatially explicit simulations. Computers, Environment and Urban Systems, 2016,59:116-128. |
[11] |
LEE J Y, LEE M J, HAN M. A pilot study to evaluate runoff quantity from green roofs. Journal of Environmental Management, 2015,152:171-176.
doi: 10.1016/j.jenvman.2015.01.028 pmid: 25666437 |
[12] | RICHARDS P J, FARRELL C, TOM M, et al. Vegetable raingardens can produce food and reduce stormwater runoff. Urban Forestry & Urban Greening, 2015,14(3):646-654. |
[13] | MANGANGKA I R, LIU A, EGODAWATTA P, et al. Performance characterisation of a stormwater treatment bioretention basin. Journal of Environmental Management, 2015,150:173-178. |
[14] | GREGOIRE B G, CLAUSEN J C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecological Engineering, 2011,37(6):963-969. |
[15] |
CARPENTER C M G, TODOROV D, DRISCOLL C T, et al. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations. Environmental Pollution, 2016,218:664-672.
doi: 10.1016/j.envpol.2016.07.056 pmid: 27521294 |
[16] | 陈莎, 陈晓宏. 城市雨水径流污染及LID控制效果模拟. 水资源保护, 2018,34(5):13-19. |
[ CHEN S, CHEN X H. Simulation of urban rainfall runoff pollution and control effect by low impact development. Water Resource Protection, 2018,34(5):13-19.] | |
[17] | LIGHT R, SMITH P. Accumulating evidence: Procedures for resolving con-tradictions among different research studies. Harvard Education Review, 1971,41:429-471. |
[18] | LAGANIERE J, ANGERS D A, PARE D. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, 2010,16(1):439-453. |
[19] | ILSTEDT U, MALMER A, VERBEETEN E, et al. The effect of afforestation on water infiltration in the tropics: A systematic review and meta-analysis. Forest Ecology and Management, 2007,251(1-2):45-51. |
[20] | 张学珍, 赵彩杉, 董金玮, 等. 1992—2017年基于荟萃分析的中国耕地撂荒时空特征. 地理学报, 2019,74(3):411-420. |
[ ZHANG X Z, ZHAO C S, DONG J W, et al. Spatio-temporal pattern of cropland abandonment in China from 1992 to 2017: A Meta-analysis. Acta Geographica Sinica, 2019,74(3):411-420.] | |
[21] | AKTHER M, HE J, CHU A, et al. A review of green roof applications for managing urban stormwater in different climatic zones. Sustainability, 2018,10(8):2864. |
[22] | 葛德, 张守红. 不同降雨条件下植被对绿色屋顶径流调控效益影响. 环境科学, 2018,39(11):5015-5023. |
[ GE D, ZHANG S H. Impacts of vegetation on hydrological performances of green roofs under different rainfall conditions. Environmental Science, 2018,39(11):5015-5023.] | |
[23] | 张曼, 周可可, 张婷, 等. 城市典型LID措施水文效应及雨洪控制效果分析. 水力发电学报, 2019,38(5):57-71. |
[ ZHANG M, ZHOU K K, ZHANG T, et al. Hydrological responses and stormwater control effects of typical urban LID measures. Journal of Hydroelectric Engineering, 2019,38(5):57-71.] | |
[24] | 赵庆俊, 丛海兵, 汪智霞, 等. 高渗透下凹绿地对城市降雨径流的削减作用研究. 水利水电技术, 2018,49(9):41-48. |
[ ZHAO Q J, CONG H B, WANG Z X, et al. Study on urban rainfall runoff reduction effect of high permeable concave-down green space. Water Resources and Hydropower Engineering, 2018,49(9):41-48.] | |
[25] | 王俊岭, 张智贤, 秦全城, 等. 改良型透水铺装对弱透水土质地区的水质控制试验. 水资源保护, 2019,35(3):63-68, 75. |
[ WANG J L, ZHANG Z X, QIN Q C, et al. Water quality control test of modified permeable pavement in weak permeable soil quality area. Water Resources Protection, 2019,35(3):63-68, 75.] | |
[26] | 贺文彦, 谢文霞, 赵敏华, 等. 海绵城市试点区域内面源污染发生过程及其对水体污染负荷贡献评估. 环境科学学报, 2018,38(4):1586-1597. |
[ HE W Y, XIE W X, ZHAO M H, et al. The contribution of urban diffuse pollutants to water pollution in a sponge city pilot area. Acta Scientiae Circumstantiae, 2018,38(4):1586-1597.] | |
[27] | 沈子欣, 阚丽艳, 车生泉. 生态植草沟结构参数变化对降雨径流调蓄净化效应的影响. 上海交通大学学报: 农业科学版, 2015,33(6):46-52. |
[ SHEN Z X, KAN L Y, CHE S Q. Effects of grass swales structure parameters on storage and pollutant removal of rainfall runoff. Journal of Shanghai Jiaotong University: Agricultural Science, 2015,33(6):46-52.] | |
[28] | 唐双成, 罗纨, 贾忠华, 等. 填料及降雨特征对雨水花园削减径流及实现海绵城市建设目标的影响. 水土保持学报, 2016,30(1):73-78, 102. |
[ TANG S C, LUO W, JIA Z H, et al. Effects of filler and rainfall characteristics on runoff reduction of rain garden and achieving the goal of sponge city construction. Journal of Soil and Water Conservation, 2016,30(1):73-78, 102.] | |
[29] | 宫曼莉, 左俊杰, 任心欣, 等. 透水路面—生物滞留池组合道路的城市面源污染控制效果评估. 环境科学, 2018,39(9):4096-4104. |
[ GONG M L, ZUO J J, REN X X, et al. Evaluation of effect of urban non-point source pollution control on porous asphalt-bio-retention combined roads. Environment Science, 2018,39(9):4096-4104.] | |
[30] | 张晓菊, 董文艺. 下凹式绿地径流污染控制与径流量消减影响因素分析. 环境科学与技术, 2017,40(2):113-117. |
[ ZHANG X J, DONG W Y. Influential factors of runoff pollutant control and volume reduction for low-lying grassland. Environmental Science & Technology, 2017,40(2):113-117.] | |
[31] | 王俊岭, 张亚琦, 秦全城, 等. 一种新型透水铺装对雨水径流污染物的去除试验研究. 安全与环境学报, 2019,19(2):643-652. |
[ WANG J L, ZHANG Y Q, QIN Q C, et al. Removing efficiency of pollutants from rainwater runoff via new permeable pavement. Journal of Safety and Environment, 2019,19(2):643-652.] | |
[32] | 郭凤, 陈建刚, 杨军, 等. 植草沟对北京市道路地表径流的调控效应. 水土保持通报, 2015,35(3):176-181. |
[ GUO F, CHEN J G, YANG J, et al. Regulatory effect of grassed swales on road surface runoff in Beijing city. Bulletin of Soil and Water Conservation, 2015,35(3):176-181.] | |
[33] | 戈鑫, 杨云安, 管运涛, 等. 植草沟对苏南地区面源污染控制的案例研究. 中国给水排水, 2018,34(19):134-138. |
[ GE X, YANG Y A, GUAN Y T, et al. A case study on control of non-point source pollution by grassed swales in South Jiangsu. China Water & Wastewater, 2018,34(19):134-138.] | |
[34] | 赵松婷, 李新宇, 戴子云, 等. 集雨型绿地雨水净化功能效果评估: 以北京望和公园为例. 北京农学院学报, 2019,34(1):82-86. |
[ ZHAO S T, LI X Y, DAI Z Y, et al. Purification effect evaluation of rainwater harvesting green space on rainfall-runoff pollution: Taking Wanghe Park as an example. Journal of Beijing University of Agriculture, 2019,34(1):82-86.] | |
[35] | 米秋菊, 米勇. 生物滞留技术去除污染物效果的试验研究. 水土保持应用技术, 2014, ( 1):4-6. |
[ MI Q J, MI Y. Experimental study on removal of pollutants by biological retention technology. Technology of Soil and Water Conservation, 2014, ( 1):4-6.] | |
[36] | 郭娉婷, 王建龙, 杨丽琼, 等. 生物滞留介质类型对径流雨水净化效果的影响. 环境科学与技术, 2016,39(3):60-67. |
[ GUO P T, WANG J L, YANG L Q, et al. Effect of bioretention media on pollutions removal from stormwater runoff. Environmental Science & Technology, 2016,39(3):60-67.] | |
[37] | 凌莉, 赵新华, 卢玉迪. 透水路面结构对雨水持蓄及污染控制的影响. 环境工程学报, 2016,10(12):6956-6962. |
[ LING L, ZHAO X H, LU Y D. Influence of permeable pavement structures on rainwater retention and pollution prevention. Chinese Journal of Environmental Engineering, 2016,10(12):6956-6962.] | |
[38] | 王闪, 张立秋. 下凹式绿地对模拟道路径流中磷削减效果研究. 环境科学与技术, 2015,38(9):119-122. |
[ WANG S, ZHANG L Q. The cutting effect of phosphorus in simulated road runoff by concave herbaceous field. Environmental Science & Technology, 2015,38(9):119-122.] | |
[39] | 李俊奇, 向璐璐, 毛坤, 等. 雨水花园蓄渗处置屋面径流案例分析. 中国给水排水, 2010,26(10):129-133. |
[ LI J Q, XIANG L L, MAO K, et al. Case study on rain garden storage-infiltration system for disposal of roof runoff. China Water & Wastewater, 2010,26(10):129-133.] | |
[40] | 王帅兵, 王克勤, 李秋芳, 等. 植草带对红壤坡耕地面源污染物输出的削减效果. 水土保持通报, 2013,33(1):1-7. |
[ WANG S B, WANG K Q, LI Q F, et al. Reduction effects of grass planting belt on non-point source pollutants from crop land in red soil sloping area. Bulletin of Soil and Water Conservation, 2013,33(1):1-7.] | |
[41] | 袁丽丽, 吴冠仑, 樊波, 等. 植草沟草种选择对降雨径流调蓄效应的影响. 甘肃农业大学学报, 2019,54(1):137-143. |
[ YUAN L L, WU G L, FAN B, et al. Effect of grass species selection for grass swales on runoff regulation. Journal of Gansu Agricultural University, 2019,54(1):137-143.] | |
[42] | 单进, 戴子云. 北京常用草坪式屋顶绿化轻型基质对屋面雨水径流控制影响研究. 北方园艺, 2019, ( 20):86-91. |
[ SHAN J, DAI Z Y. Study on influence of different growing mediums of lawn green roofs for roof runoff control in Beijing. Northern Horticulture, 2019, ( 20):86-91. ] | |
[43] | 崇佳文, 徐乐中, 李翠梅, 等. 渗透铺装对降雨径流水文水质调控效果分析. 南水北调与水利科技, 2018,16(2):115-121. |
[ CHONG J W, XU L Z, LI C M, et al. Simulation of regulation effect of permeable pavement on hydrology and water quality of rainfall runoff. Southt-to-North Water Transfers and Water Science & Technology, 2018,16(2):115-121.] | |
[44] | 薛天一, 徐乐中, 李翠梅, 等. 生物滞留池水文水质效应模拟分析. 水利水电技术, 2018,49(1):121-127. |
[ XUE T Y, XU L Z, LI C M, et al. Simulative analysis on hydrological and water quality effects of bioretention pond. Water Resources and Hydropower Engineering, 2018,49(1):121-127.] | |
[45] | 李婉亭, 孙冬梅, 冯平. 低影响开发措施(LID)对天津市暴雨径流影响模拟研究. 自然灾害学报, 2017,26(3):156-166. |
[ LI W T, SUN D M, FENG P. Simulation study on influence of low impact development measures on rainstorm runoff in Tianjin Municipality. Journal of Natural Disasters, 2017,26(3):156-166.] | |
[46] |
李娜, 孟雨婷, 王静, 等. 低影响开发措施的内涝削减效果研究: 以济南市海绵试点区为例. 水利学报, 2018,49(12):1489-1502.
doi: 10.13243/j.cnki.slxb.20180696 |
[ LI N, MENG Y T, WANG J, et al. Effect of low impact development measures on inundation reduction: Taking Jinan pilot area as example. Journal of Hydraulic Engineering, 2018,49(12):1489-1502.] | |
[47] | 黄国如, 麦叶鹏, 李碧琦, 等. 基于PCSWMM模型的广州典型社区海绵化改造水文效应研究. 南方建筑, 2017, ( 3):38-45. |
[ WANG G R, MAI Y P, LI B Q, et al. Study on hydrological effect of typical community sponge transformation based on PCSWMM in Guangzhou. South Architecture, 2017, ( 3):38-45.] | |
[48] | 孙志康, 李翠梅, 程桂, 等. 基于SWMM的LID组合措施水文水质模拟效果研究. 中国农村水利水电, 2017, ( 12):109-114. |
[ SUN Z K, LI C M, CHENG G, et al. Research on the effect of LID combined measures on hydrology and water quality simulation based on SWMM. China Rural Water and Hydropower, 2017, ( 12):109-114.] | |
[49] | 赵沛, 程伍群, 庞立军, 等. 基于SWMM的透水铺装系统的水文效应研究. 水电能源科学, 2019,37(1):29-31. |
[ ZHAO P, CHENG W Q, PANG L J, et al. Study on hydrological effect of permeable pavement system based on SWMM. Water Resources and Power, 2019,37(1):29-31.] | |
[50] | 肖存艳, 傅春, 詹健. 基于SWMM的中尺度雨水系统构建下的水质水量模拟. 水利水电技术, 2018,49(3):17-25. |
[ XIAO C Y, FU C, ZHAN J. SWMM-based simulation on water quality and water quantity for construction of mesoscale rainwater system. Water Resources and Hydropower Engineering, 2018,49(3):17-25.] | |
[51] | 李家科, 李亚, 沈冰, 等. 基于SWMM模型的城市雨水花园调控措施的效果模拟. 水力发电学报, 2014,33(4):60-67. |
[ LI J K, LI Y, SHEN B, et al. Simulation of rain garden effects in urbanized area based on SWMM. Journal of Hydroelectric Engineering, 2014,33(4):60-67.] | |
[52] | 杨帆, 徐建刚, 林蔚. 基于元胞自动机的低影响开发对城市内涝削减效果模拟. 自然资源学报, 2017,32(7):1158-1169. |
[ YANG F, XU J G, LIN W. Cellular automaton simulation of the effect of low impact development on urban water-logging reduction. Journal of Natural Resources, 2017,32(7):1158-1169.] | |
[53] |
刘文, 陈卫平, 彭驰. 社区尺度绿色基础设施暴雨径流消减模拟研究. 生态学报, 2016,36(6):1686-1697.
doi: 10.5846/stxb201408121604 |
[ LIU W, CHEN W P, PENG C. Modeling the effects of green infrastructure on storm water runoff reduction at community scale. Acta Ecologica Sinica, 2016,36(6):1686-1697.] | |
[54] | 黄国如, 李碧琦. 深圳民治河流域低影响开发措施水文效应评估. 水资源与水工程学报, 2018,29(3):1-6. |
[ WANG G R, LI B Q. Hydrological effect evaluation of low impact development measures at Minzhi River Basin in Shenzhen. Journal of Water Resources & Water Engineering, 2018,29(3):1-6.] | |
[55] | 贺靖雄, 李翠梅, 程桂, 等. 海绵城市雨水花园水文水质过程模拟. 水电能源科学, 2019,37(4):9-12. |
[ HE J X, LI C M, CHENG G, et al. Simulation of hydrology and water quality in rainwater garden of sponge city. Water Resources and Power, 2019,37(4):9-12.] | |
[56] | 杨钢, 徐宗学, 赵刚, 等. 基于SWMM模型的北京大红门排水区雨洪模拟及LID效果评价. 北京师范大学学报: 自然科学版, 2018,54(5):628-634. |
[ YANG G, XU Z X, ZHAO G, et al. Simulating urban rainfall-runoff and assessing LID facilities by SWMM model in Dahongmen catchment. Journal of Beijing Normal University: Natural Science, 2018,54(5):628-634.] | |
[57] | AHIABLAME L M, ENGEL B A, Chaubey I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water, Air, & Soil Pollution, 2012,223(7):4253-4273. |
[1] | 宁怡楠, 杨晓楠, 孙文义, 穆兴民, 高鹏, 赵广举, 宋小燕. 黄河中游河龙区间径流量变化趋势及其归因[J]. 自然资源学报, 2021, 36(1): 256-269. |
[2] | 王赛男, 李建鸿, 蒲俊兵, 霍伟杰, 张陶, 黄思宇, 袁道先. 气候和人类活动对典型岩溶地下河系统径流年际变化的影响[J]. 自然资源学报, 2019, 34(4): 759-770. |
[3] | 杨梦婵, 叶有华, 张原, 陈龙, 张燚. 深圳市综合水质指数研究及其在水资源资产评估上的应用[J]. 自然资源学报, 2018, 33(7): 1129-1138. |
[4] | 马永喜, 王娟丽, 王晋. 基于生态环境产权界定的流域生态补偿标准研究[J]. 自然资源学报, 2017, 32(8): 1325-1336. |
[5] | 朱晓磊, 张建军, 程明芳, 徐琴. 基于Meta分析的矿业城市生态服务价值转移研究[J]. 自然资源学报, 2017, 32(3): 434-448. |
[6] | 张永勇, 花瑞祥, 夏瑞. 气候变化对淮河流域水量水质影响分析[J]. 自然资源学报, 2017, 32(1): 114-126. |
[7] | 王彦君, 王随继, 苏腾. 降水和人类活动对松花江径流量变化的贡献率[J]. 自然资源学报, 2015, 30(2): 304-314. |
[8] | 张广纳, 邵景安, 王金亮. 基于农业面源污染的三峡库区重庆段水质时空格局演变特征[J]. 自然资源学报, 2015, 30(11): 1872-1884. |
[9] | 李静, 马潇璨. 资源与环境双重约束下的工业用水效率——基于SBM-Undesirable和Meta-frontier模型的实证研究[J]. 自然资源学报, 2014, 29(6): 920-933. |
[10] | 张永勇, 王中根, 于静洁, 翟晓燕. 流域COD减排核证研究——以淮河中上游为例[J]. 自然资源学报, 2014, 29(5): 819-829. |
[11] | 吴敬禄, 马龙, 曾海鳌. 乌伦古湖水量与水质变化特征及其环境效应[J]. 自然资源学报, 2013, 28(5): 844-853. |
[12] | 周园园, 师长兴, 杜俊, 范小黎. 无定河流域1956—2009年径流量变化及其影响因素 [J]. 自然资源学报, 2012, (5): 856-865. |
[13] | 王菊翠, 仵彦卿, 党碧玲, 徐增让, 胡安焱, 张学真. 基于统计分析的陕西段泾河水质时空分布特征[J]. 自然资源学报, 2012, 27(4): 674-685. |
[14] | 李林, 时兴合, 申红艳, 戴升, 肖建设. 1960—2009年青海湖水位波动的气候成因探讨及其未来趋势预测[J]. 自然资源学报, 2011, 26(9): 1566-1574. |
[15] | 夏叡, 李云梅, 王桥, 吕恒, 金鑫, 王彦飞. 京杭大运河无锡段水质和土地利用的响应关系[J]. 自然资源学报, 2011, 26(3): 364-372. |
|