自然资源学报 ›› 2020, Vol. 35 ›› Issue (10): 2528-2538.doi: 10.31497/zrzyxb.20201017
雷义珍1,2, 曹生奎1,2, 曹广超1,2, 杨羽帆1,2, 兰垚1,2, 季雨桐1,2, 李华非1,2
收稿日期:
2019-04-20
修回日期:
2019-08-22
出版日期:
2020-10-28
发布日期:
2020-12-28
通讯作者:
曹生奎(1979- ),男,青海大通人,博士,教授,研究方向为生态水文与水资源。E-mail: caoshengkui@163.com
作者简介:
雷义珍(1994- ),男,重庆巫溪人,硕士,研究方向为生态水文与水资源。E-mail: Leiyizhen@163.com
基金资助:
LEI Yi-zhen1,2, CAO Sheng-kui1,2, CAO Guang-chao1,2, YANG Yu-fan1,2, LAN Yao1,2, JI Yu-tong1,2, LI Hua-fei1,2
Received:
2019-04-20
Revised:
2019-08-22
Online:
2020-10-28
Published:
2020-12-28
摘要: 氢氧稳定同位素技术是研究地表水和地下水相互作用的有效手段。依据青海湖沙柳河流域2018年消融期、多雨期和冰冻期所收集的降水、河水和地下水样品中对氢氧同位素组成(δD、δ18O)的测定结果,识别和量化不同时期高山草原带和高山草甸带地表水和地下水间的补给关系和比例,其目的旨在明确高寒内陆河流域地表水和地下水δD和δ18O受降水影响的时空差异。结果表明:青海湖沙柳河流域地表水和地下水δD和δ18O值受降水响应存在时空差异性,δD和δ18O值在消融期受降水影响最强,冰冻期最弱;在高山草甸带δD和δ18O值受降水的影响强于高山草原带。消融期的高山草甸带、高山草原带和冰冻期的高山草原带地表水补给地下水的比例分别为80.65%、93.36%和89.44%;多雨期的高山草甸带、高山草原带和冰冻期的高山草甸带地下水补给地表水的比例分别为44.50%、74.85%和88.58%。研究结果可为该流域水资源优化配置和管理提供科学依据。
雷义珍, 曹生奎, 曹广超, 杨羽帆, 兰垚, 季雨桐, 李华非. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538.
LEI Yi-zhen, CAO Sheng-kui, CAO Guang-chao, YANG Yu-fan, LAN Yao, JI Yu-tong, LI Hua-fei. Study on surface water and groundwater interaction of Shaliu River Basin in Qinghai Lake in different periods[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(10): 2528-2538.
[1] PRADA S, CRUZ V J, FIGUEIRA C.Using stable isotopes to characterize groundwater recharge sources in the volcanic island of Madeira, Portugal. Journal of Hydrology, 2016, 536: 409-425. [2] WOESSNER W W.Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water, 2000, 38(3): 423-429. [3] HARVEY J W, NEWLIN J T, KRUPA S L.Modeling decadal timescale interactions between surface water and ground water in the Central Everglades, Florida, USA. Journal of Hydrology, 2006, 320(3): 400-420. [4] WINTER T C.Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeology Journal, 1999, 7(1): 28-45. [5] RESTREPO J I, MONTOYA A M, OBEVSEKERA J.A wetland simulation module for the MODFLOW ground water model. Ground Water, 1998, 36(5): 764-770. [6] OSMAN Y Z, BRUEN M P.Modelling stream-aquifer seepage in an alluvial aquifer: An improved loosing-stream package for modflow. Journal of Hydrology, 2002, 264(1): 69-86. [7] KALBUS E, SCHMIDT C, MOLSON J W, et al.Influence of aquifer and streambed heterogeneity on the distribution of groundwater discharge. Hydrology and Earth System Sciences, 2009, 13(1): 69-77. [8] CARDENAS M B, WILSON J L, ZLONTNIK V A.Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 2004, 40(8): W08307, Doi: 10.1029/2004wr003008. [9] CARDENAS M B.Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resources Research, 2009, 45(6): W06429, Doi: 10.1029/2008wr007651. [10] DERX J, BLASCHKE A P, BLOSCHL G.Three-dimensional flow patterns at the river-aquifer interface: A case study at the Danube. Advances in Water Resources, 2010, 33(11): 1375-1387. [11] WANG G X, YANG L Y, CHEN L, et al.Impacts of land use changes on groundwater resources in the Heihe River Basin. Journal of Geographical Sciences, 2005, 15(4): 405-414. [12] 朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展. 中国环境科学, 2017, 37(8): 3002-3010. [ZHU J F, LIU Y Y, ZHANG S A, et al.Review on the research of surface water and groundwater interactions. China Environmental Science, 2017, 37(8): 3002-3010.] [13] KALBUS E, RENINSTORF F, SCHIRMER M.Measuring methods for groundwater-surface water interactions: A review. Hydrology and Earth System Sciences, 2006, 10(6): 873-887. [14] SCHMIDT C, BAYER-RAICH M, SCHINMER M.Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrology and Earth System Sciences Discussions, 2006, 3(4): 1419-1446. [15] 姚天次, 章新平, 李广, 等. 湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系. 自然资源学报, 2016, 31(7): 1198-1210. [YAO T C, ZHANG X P, LI G, et al.Characteristics of the stable isotopes in different water bodies and relationships in surrounding areas of Yuelu Mountain in the Xiangjiang River Basin. Journal of Natural Resources, 2016, 31(7): 1198-1210.] [16] ZHAO D, WANG G C, LIAO F, et al.Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium, oxygen-18) tracers in the Nomhon Area, Qaidam Basin, NW China. Journal of Hydrology, 2018, 565: 650-661. [17] 谷洪彪, 迟宝明, 王贺, 等. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据. 地理科学进展, 2017, 32(8): 788-789. [GU H B, CHI B M, WANG H, et al.Relationship between surface water and groundwater in the Liujiang Basin hydrochemical constrains. Progress in Geography, 2017, 32(8): 789-799.] [18] CUI B L, LI X Y. Stable isotopes reveal sources of precipitation in the Qinghai Lake Basin of the Northeastern Tibetan Plateau. Science of the Total Environment, 2015, 527-528: 26-37. [19] 曹生奎, 陈克龙, 曹广超, 等. 青海湖流域矮嵩草草甸土壤有机碳密度分布特征. 生态学报, 2014, 34(2): 482-490. [CAO S K, CHEN K L, CAO G C, et al.Characteristics of soil carbon density distribution of the Kobresia humilis meadow in the Qinghai Lake Basin. Acta Ecologica Sinica, 2014, 34(2): 482-490.] [20] 金章东, 石岳威, 张飞. 青海湖流域浅层地下水补给来源及其位变化. 地球环境学报, 2010, 1(3): 169-174. [JIN Z D, SHI Y W, ZHANG F.Sources of shallow groundwater recharge and changes of water level in Qinghai Lake Basin. Journal of Earth Environment, 2010, 1(3): 169-174.] [21] XIAO J, JIN Z D, ZHANG F.Geochemical and isotopic characteristics of shallow groundwater within the Lake Qinghai Catchment, NE Tibetan Plateau. Quaternary International, 2013, 313-314: 62-67. [22] 崔步礼. 基于氢氧稳定同位素的青海湖流域水循环及水量转换关系研究. 北京: 北京师范大学, 2011: 16-18. [CUI B L.Study on the relationship between water cycle and water quantity conversion in Qinghai Lake Basin based on hydrogen and oxygen stable isotope. Beijing: Beijing Normal University, 2011: 16-18.] [23] 杨羽帆, 曹生奎, 冯起, 等. 青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征. 中国沙漠, 2019, (5): 1-9. [YANG Y F, CAO S K, FENG Q, et al.Spatial distribution characteristics of composition of stable hydrogen and oxygen isotopes of shallow groundwater in Shaliu River Basin of Qinghai Lake. Journal of Desert Research, 2019, (5): 1-9.] [24] CUI B L, LI X Y. Runoff processes in the Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau, China: Insights from stable isotope and hydrochemistry. Quaternary International, 2015, 380-381: 123-132. [25] 刚察县志编纂委员会. 刚察县志. 西安: 陕西人民出版社, 1998: 95-97. [Gangcha County Annals Compilation Committee. Gangcha County. Xi'an: Shaanxi People's Publishing House, 1998: 95-97.] [26] GUO Q L, YANG Y S, HAN Y Y, et al.Assessment of surface-groundwater interactions using hydrochemical and isotopictechniques in a coalmine watershed, NW China. Environmental Earth Sciences, 2019, 3: 78-91. [27] TAN H B, LIU Z H, RAO W B, et al.Stable isotopes of soil water: Implications for soil water and shallow groundwater recharge in hill and gully regions of the Loess Plateau, China. Agriculture, Ecosystems and Environment, 2017, 243: 1-9. [28] 顾慰祖. 同位素水文学. 北京: 科学出版社, 2011: 145-147. [GU W Z. Isotope Hydrology.Beijing: Science Press, 2011: 145-147.] [29] WANG W, WU T, ZHAO L, et al.Exploring the ground ice recharge near permafrost table on the Central Qinghai-Tibet Plateau using chemical and isotopic data. Journal of Hydrology, 2018, 560: 220-229. [30] 吴华武, 李小雁, 赵国琴, 等. 青海湖流域降水和河水中青海湖流域降水和河中 [WU H W, LI X Y, ZHAO G Q, et al.Variation characteristics of |
[1] | 赵玉峰, 罗专溪, 于亚军, 陈迎辉, 张树刚, 张清华. 京津冀西北典型区域地下水位时空演变及驱动因素[J]. 自然资源学报, 2020, 35(6): 1301-1313. |
[2] | 张清华, 赵玉峰, 唐家良, 陆文, 罗专溪. 京津冀西北典型流域地下水化学特征及补给源分析[J]. 自然资源学报, 2020, 35(6): 1314-1325. |
[3] | 邵志江, 郑斌, 汪涛. 永定河上游主要河流地表水水质时空变化特征[J]. 自然资源学报, 2020, 35(6): 1338-1347. |
[4] | 徐增让, 靳茗茗, 郑鑫, 魏子谦. 羌塘高原人与野生动物冲突的成因[J]. 自然资源学报, 2019, 34(7): 1521-1530. |
[5] | 龚亚珍, 关宝珠, 代喆, 张惠. 基于外部效应分析机井密度对地下水位的影响[J]. 自然资源学报, 2019, 34(3): 633-645. |
[6] | 赵自国, 赵凤娟, 夏江宝, 王月海. 地下水矿化度对黄河三角洲柽柳光合及耗水特征的影响[J]. 自然资源学报, 2019, 34(12): 2588-2600. |
[7] | 任冉冉, 夏江宝, 张淑勇, 赵自国, 赵西梅. 黄河三角洲柽柳光合作用及树干液流对潜水埋深的响应[J]. 自然资源学报, 2019, 34(12): 2615-2628. |
[8] | 罗文哲, 蒋艳灵, 王秀峰, 刘华先, 陈远生. 华北地下水超采区农户节水灌溉技术认知分析——以河北省张家口市沽源县为例[J]. 自然资源学报, 2019, 34(11): 2469-2480. |
[9] | 袁瑞强, 张文新, 王鹏, 王仕琴. 引黄调水对汾河受水区水环境的影响[J]. 自然资源学报, 2018, 33(8): 1416-1426. |
[10] | 张虹, 张代钧, 卢培利, 宋福忠, 寇双伍. 重庆市页岩气开采流域地表水资源安全的综合评价[J]. 自然资源学报, 2018, 33(8): 1451-1462. |
[11] | 崔丽娟, 赵欣胜, 李伟, 康晓明, 雷茵茹, 张曼胤, 孙宝娣, 于菁菁. 基于土壤渗透系数的吉林省湿地补给地下水功能分析[J]. 自然资源学报, 2017, 32(9): 1457-1468. |
[12] | 李静, 吴华武, 李小雁, 贺斌, 裴婷婷, 蒋志云, 鲍志诚. 青海湖流域农田生态系统氢氧同位素特征及其水分利用变化研究[J]. 自然资源学报, 2017, 32(8): 1348-1359. |
[13] | 谢花林, 程玲娟. 地下水漏斗区农户冬小麦休耕意愿的影响因素及其生态补偿标准研究——以河北衡水为例[J]. 自然资源学报, 2017, 32(12): 2012-2022. |
[14] | 霍高鹏, 赵西宁, 高晓东, 王绍飞, 潘燕辉. 黄土丘陵区枣农复合系统土壤水分利用与竞争[J]. 自然资源学报, 2017, 32(12): 2043-2054. |
[15] | 王丹阳, 李景保, 叶亚亚, 谭芬芳. 一种改进的灰水足迹计算方法[J]. 自然资源学报, 2015, 30(12): 2120-2130. |
|