自然资源学报 ›› 2020, Vol. 35 ›› Issue (6): 1484-1498.doi: 10.31497/zrzyxb.20200619
任正超1, 2, 朱华忠3, 史华4, 柳小妮5
收稿日期:
2019-04-18
修回日期:
2019-06-10
出版日期:
2020-06-28
发布日期:
2020-06-28
作者简介:
任正超(1983-), 男, 四川渠县人, 硕士, 讲师, 主要从事草地类型划分及草地碳循环研究。E-mail:renzhengchao2008@163.com
基金资助:
REN Zheng-chao1, 2, ZHU Hua-zhong3, SHI Hua4, LIU Xiao-ni5
Received:
2019-04-18
Revised:
2019-06-10
Online:
2020-06-28
Published:
2020-06-28
摘要: 潜在自然植被(PNV)对生态环境的修复与重建、自然保护区的规划与建设和农牧业的生产与发展均有着重要的指导作用。研究基于综合顺序分类系统(CSCS),利用最后间冰期至未来2070s六个时期的温度和降水量数据,模拟中国PNV的时空分布格局及其对气候变化的响应。研究结果表明:(1)CSCS将六个时期中国PNV分别划分为39、37、38、40、40和40类以及10个类组。(2)寒冷干旱型类组主要分布在西北,温暖湿润型和炎热潮湿型则分布在中东部和南方。除冻原和高山草地、冷荒漠、半荒漠和温带森林草地4个类组呈现下降趋势外,其余均为上升趋势。(3)温带森林草地转变为亚热带森林草地的面积最大,占总变化面积的35.4%。(4)CSCS既未包含人类活动影响因素,又能模拟长时间序列的PNV演替。(5)最后间冰期至未来2070s,森林类组向纬度和海拔高度更高的北方及青藏高原移动。研究结果进一步明确了PNV概念的界限,揭示了气候变化对PNV演替的作用机理。
任正超, 朱华忠, 史华, 柳小妮. 最后间冰期至未来2070s中国潜在自然植被时空分布格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(6): 1484-1498.
REN Zheng-chao, ZHU Hua-zhong, SHI Hua, LIU Xiao-ni. Spatio-temporal distribution pattern of potential natural vegetation and its response to climate change from Last Interglacial to future 2070s in China[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(6): 1484-1498.
[1] KELLY A, POWELL D C, RIGGS R A.Predicting potential natural vegetation in an interior northwest landscape using classification tree modeling and a GIS. Western Journal of Applied Forestry, 2005, 20(2): 117-127. [2] ROSATI L, MARIGNANI M, BLASI C.A gap analysis comparing natura 2000 vs national protected area network with potential natural vegetation. Community Ecology, 2008, 9(2): 147-154. [3] AGUILAR M J A, GONZALEZ-GONZALEZ R, GARZON-MACHADO V, et al. Actual and potential natural vegetation on the Canary Islands and its conservation status. Biodiversity and Conservation, 2010, 19(11): 3089-3140. [4] THONICKE K, CRAMER W.Long-term trends in vegetation dynamics and forest fires in Brandenburg (Germany) under a changing climate. Natural Hazards, 2006, 38(1-2): 283-300. [5] HICKLER T, VOHLAND K, FEEHAN J, et al.Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography, 2012, 21(1): 50-63. [6] WANG H, NI J, PRENTICE I C.Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Regional Environmental Change, 2011, 11(3): 715-727. [7] TÜXEN R. Die heutige potentielle natürliche vegetation als gegenstand der vegetationskartierung. Angewandte Pflanzensoziologie (Stolzenau), 1956, 13: 5-42. [8] CARRIÓN J S, FERNANDEZ S. The survival of the 'natural potential vegetation' concept (or the power of tradition). Journal of Biogeography, 2009, 36(12): 2202-2203. [9] FARRIS E, FILIBECK G, MARIGNANI M, et al.The power of potential natural vegetation (and of spatial-temporal scale): A response to Carrión & Fernandez (2009). Journal of Biogeography, 2010, 37(11): 2211-2213. [10] LOIDI J, ARCO M, PAZ P L P, et al. Understanding properly the 'potential natural vegetation' concept. Journal of Biogeography, 2010, 37(11): 2209-2211. [11] CHIARUCCI A, ARAÚJO M B, DECOCQ G, et al. The concept of potential natural vegetation: An epitaph?. Journal of Vegetation Science, 2010, 21(6): 1172-1178. [12] SOMODI I, MOLNÁR Z, EWALD J. Towards a more transparent use of the potential natural vegetation concept-an answer to Chiarucci et al. Journal of Vegetation Science, 2012, 23(3): 590-595. [13] CARRIÓN J S. The concepts of potential natural vegetation (PNV) and other abstraction (trying to pick up fish with wet hands). Journal of Biogeography, 2010, 37(11): 2213-2215. [14] ZAMPIERI M, LIONELLO P.Simple statistical approach for computing land cover types and potential natural vegetation. Climate Research, 2010, 41(41): 205-220. [15] FISCHER H S, WINTER S, LOHBERGER E, et al.Improving transboundary maps of potential natural vegetation using statistical modeling based on environmental predictors. Folia Geobotanica, 2013, 48(2): 115-135. [16] REGER B, HÄRING T, EWALD J. The TRM model of potential natural vegetation in mountain forests. Folia Geobotanica, 2014, 49(3): 337-359. [17] JACKSON S T.Natural, potential and actual vegetation in North America. Journal of Vegetation Science, 2013, 24(4): 772-776. [18] 赵传燕, 冯兆东, 南忠仁, 等. 黄土高原祖厉河流域潜在植被分布模拟研究. 地理学报, 2007, 62(1): 52-61. [ZHAO C Y, FENG Z D, NAN Z R, et al.Modelling of potential vegetation in Zulihe river watershed of the west-central Loess Plateau. Acta Geographica Sinica, 2007, 62(1): 52-61.] [19] LIU H M, WANG L X, YANG J, et al.Predictive modeling of the potential natural vegetation pattern in Northeast China. Ecological Research, 2009, 24(6): 1313-1321. [20] YUAN Q Z, ZHAO D S, WU S H, et al.Validation of the integrated biosphere simulator in simulating the potential natural vegetation map of China. Ecological Research, 2011, 26(5): 917-929. [21] 赵茂盛, NEILSON R P, 延晓冬, 等. 气候变化对中国植被可能影响的模拟. 地理学报, 2002, 57(1): 28-38. [ZHAO M S, NEILSON R P, YAN X D, et al.Modelling the vegetation of China under changing climate. Acta Geographica Sinica, 2002, 57(1): 28-38.] [22] LIANG T G, FENG Q S, CAO J J, et al.Changes in global potential vegetation distributions from 1911 to 2000 as simulated by the comprehensive sequential classification system approach. Chinese Science Bulletin, 2012, 57(11): 1298-1310. [23] 李飞, 赵军, 赵传燕, 等. 中国西北干旱区潜在植被模拟与动态变化分析. 草业学报, 2011, 20(4): 42-50. [LI F, ZHAO J, ZHAO C Y, et al.Simulating and analyzing dynamic changes of potential vegetation in arid areas of Northwest China. Acta Prataculturae Sinica, 2011, 20(4): 42-50.] [24] 李飞, 赵军, 赵传燕, 等. 中国干旱半干旱区潜在植被演替. 生态学报, 2011, 31(3): 689-697. [LI F, ZHAO J, ZHAO C Y, et al.Succession of potential vegetation in arid and semi-arid area of China. Acta Ecologica Sinica, 2011, 31(3): 689-697.] [25] 赵军, 师银芳, 王大为. 基于IOCS 的内蒙古潜在植被NPP 空间分布特征研究. 自然资源学报, 2012, 27(11): 1870-1880. [ZHAO J, SHI Y F, WANG D W.Analysis of spatial distribution features of potential vegetation NPP in Inner Mongolia based on the IOCS. Journal of Natural Resources, 2012, 27(11): 1870-1880.] [26] 赵军. 天然草地生态信息图谱与草业生态信息学的理论与实践研究. 兰州: 甘肃农业大学, 2007. [ZHAO J.The study on theory and practice of rangeland eco-information maps and pratacultural eco-informatics. Lanzhou: Gansu Agricultural University, 2007.] [27] 柳小妮, 郭婧, 任正超, 等. 基于气象要素空间分布模拟优化的中国草地综合顺序分类. 农业工程学报, 2012, 28(9): 222-229. [LIU X N, GUO J, REN Z C, et al.Chinese rangeland CSCS classification based on optimal simulation for spatial distribution of meteorological factors. Transactions of the CSAE, 2012, 28(9): 222-229.] [28] 任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22. [REN J Z, LIANG T G, LIN H L, et al.Study on grassland's responses to global climate change and its carbon sequestration potentials. Acta Prataculturae Sinica, 2011, 20(2): 1-22.] [29] FENG Q S, LIANG T G, HUANG X D, et al.Characteristics of global potential natural vegetation distribution from 1911 to 2000 based on comprehensive sequential classification system approach. Grassland Science, 2013, 59(2): 87-99. [30] LIANG T G, FENG Q S, YU H, et al.Dynamics of natural vegetation on the Tibetan Plateau from past to future using a comprehensive and sequential classification system and remote sensing data. Grassland Science, 2012, 58(4): 208-220. [31] 梁天刚, 冯琦胜, 黄晓东, 等. 草原综合顺序分类系统研究进展. 草业学报, 2011, 20(5): 252-258. [LIANG T G, FENG Q S, HUANG X D, et al.Review in the study of comprehensive sequential classification system of grassland. Acta Prataculturae Sinica, 2011, 20(5): 252-258.] [32] YUE T X, FAN Z M, CHEN C F, et al.Surface modelling of global terrestrial ecosystems under three climate change scenarios. Ecological Modelling, 2011, 222(14): 2342-2361. [33] HART J F.Central tendency in areal distributions. Economic Geography, 1954, 30(1): 48-59. [34] MONSERUD R A, LEEMANS R.Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 1992, 62(4): 275-293. [35] PRENTICE I C, CRAMER W, HARRISON S P, et al.A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 1992, 19(2): 117-134. [36] SUN A Z, FENG Z D, MA Y Z.Vegetation and environmental changes in western Chinese Loess Plateau since 13.0 ka BP. Journal of Geographical Sciences, 2010, 20(2): 177-192. [37] 张学珍, 王维强, 方修琦, 等. 中国东北地区17世纪后期的自然植被格局. 地理科学, 2011, 31(2): 184-189. [ZHANG X Z, WANG W Q, FANG X Q, et al.Natural vegetation pattern over Northeast China in late 17th century. Scientia Geographica Sinica, 2011, 31(2): 184-189.] [38] MARTÍNEZ-TABERNER A, RUIZ-PEREZ M, MESTRE I, et al. Prediction of potential submerged vegetation in a silted coastal marsh, Albufera of Majorea, Balearic Islands. Journal of Environmental Management, 1992, 35(1): 1-12. [39] PLAMER A R, STADEN J M V. Predicting the distribution of plant communities using annual rainfall and elevation: An example from Southern Africa. Journal of Vegetation Science, 1992, 3(2): 261-266. [40] RAMANKUTTY N, FOLEY J A.Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 1999, 13(4): 997-1027. [41] HOLDRIDGE L R.Determination of world plant formations from simple climatic data. Science, 1947, 105(2727): 367-368. [42] HOLDRIDGE L R, GRENKE W C, HATHEWAY W H, et al.Forest Environments in Tropical Life Zones: A Pilot Study. New York: Pergamon Press, 1971: 1-747. [43] NEILSON R P.A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 1995, 5(2): 362-385. [44] NEILSON R P, MARKS D.A global perspective of regional vegetation and hydrological sensitivities from climate change. Journal of Vegetation Science, 1994, 5(5): 715-730. [45] KAPLAN J O.Geophysical Application of Vegetation Modeling. Lund: Lund University, 2001. [46] FOLEY J A, PRENTICE I C, RAMANKUTTY N, et al.An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 1996, 10(4): 603-628. [47] KUCHARIK C J, FOLEY J A, DELIRE C, et al.Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 2000, 14(3): 795-825. |
[1] | 孙永胜, 佟连军. 吉林省限制开发区域资源环境承载力综合评价[J]. 自然资源学报, 2021, 36(3): 634-645. |
[2] | 李艳红, 张立娟, 朱文博, 张静静, 徐帅博, 朱连奇. 全球变化背景下南方红豆杉地域分布变化[J]. 自然资源学报, 2021, 36(3): 783-792. |
[3] | 庞艳梅, 陈超, 郭晓艺, 徐富贤. 1961—2015年西南区域单季稻生长季气候年型及其生产潜力分析[J]. 自然资源学报, 2021, 36(2): 476-489. |
[4] | 李东昇, 张仁勇, 崔步礼, 赵云朵, 王莹, 姜宝福. 1986—2015年青藏高原哈拉湖湖泊动态对气候变化的响应[J]. 自然资源学报, 2021, 36(2): 501-512. |
[5] | 宁怡楠, 杨晓楠, 孙文义, 穆兴民, 高鹏, 赵广举, 宋小燕. 黄河中游河龙区间径流量变化趋势及其归因[J]. 自然资源学报, 2021, 36(1): 256-269. |
[6] | 牛善栋, 方斌, 崔翠, 黄仕辉. 乡村振兴视角下耕地利用转型的时空格局及路径分析——以淮海经济区为例[J]. 自然资源学报, 2020, 35(8): 1908-1925. |
[7] | 柳冬青, 曹二佳, 张金茜, 巩杰, 燕玲玲. 甘肃白龙江流域水源涵养服务时空格局及其影响因素[J]. 自然资源学报, 2020, 35(7): 1728-1743. |
[8] | 吴立钰, 张璇, 李冲, 郝芳华. 气候变化和人类活动对伊逊河流域径流变化的影响[J]. 自然资源学报, 2020, 35(7): 1744-1756. |
[9] | 宋洋, 朱道林, 张立新, 张晖. 2000年以来黄河流域土地市场化时空格局演变及驱动因素[J]. 自然资源学报, 2020, 35(4): 799-813. |
[10] | 徐玲玲, 延昊, 钱拴. 基于MODIS-NDVI的2000—2018年中国北方土地沙化敏感性时空变化[J]. 自然资源学报, 2020, 35(4): 925-936. |
[11] | 王康, 李志学, 周嘉. 环境规制对碳排放时空格局演变的作用路径研究——基于东北三省地级市实证分析[J]. 自然资源学报, 2020, 35(2): 343-357. |
[12] | 方梓行, 何春阳, 刘志锋, 赵媛媛, 杨延杰. 中国北方农牧交错带气候变化特点及未来趋势——基于观测和模拟资料的综合分析[J]. 自然资源学报, 2020, 35(2): 358-370. |
[13] | 王亚慧, 戴尔阜, 马良, 尹乐. 横断山区产水量时空分布格局及影响因素研究[J]. 自然资源学报, 2020, 35(2): 371-386. |
[14] | 马伟东, 刘峰贵, 周强, 陈琼, 刘飞, 陈永萍. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050. |
[15] | 刘建志, 房艳刚, 王如如. 山东省农业多功能的时空演化特征与驱动机制分析[J]. 自然资源学报, 2020, 35(12): 2901-2915. |
|