[1] WEN Y, GONG J Z, HU Y G, et al.Simulation and analysis of urban land expansion conducted by ecological security. Geographical Research, 2017, 36(3): 518-528. [2] TOBLER W R.A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970, 46(s1): 234-240. [3] XU J G, YIN H W, ZHONG G F, et al.Study on African economy structure based on spatial autocorrelation. Economic Geography, 2006, 26(5): 771-775. [4] ZHAO J, WANG Y, SHI W. Using local Moran's I statistics to estimate spatial autocorrelation of urban economic growth in Shandong province, China. In: Singapore. The Proceedings of International Conference on Geo-Spatial Knowledge and Intelligence. Germany: Springer Press, 2017: 32-39. [5] 董玉红, 刘世梁, 安南南, 等. 基于景观指数和空间自相关的吉林大安市景观格局动态研究. 自然资源学报, 2015, 30(11): 1860-1871. [DONG Y H, LIU S L, AN N N, et al.Landscape pattern in Da'an city of Jilin province based on landscape indices and local spatial autocorrelation analysis. Journal of Natural Resources, 2015, 30(11): 1860-1871.] [6] GHIMIRE B, ROGAN J, MILLER J.Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters, 2010, 1(1): 45-54. [7] ANSELIN L.Local indicators of spatial association-LISA. Geographical Analysis, 1995, 27(2): 93-115. [8] GETIS A, ORD J K.The analysis of spatial association by use of distance statistics. Geographical Analysis, 1992, 24(3): 189-206. [9] ZHANG B, XU G, JIAO L, et al.The scale effects of the spatial autocorrelation measurement: Aggregation level and spatial resolution. International Journal of Geographical Information Science, 2019, 3(5): 945-966. [10] FAN C, MYINT S.A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landscape & Urban Planning, 2014, 121(1): 117-128. [11] WELLMANN T, HAASE D, KNAPP S, et al.Urban land use intensity assessment: The potential of spatial-temporal spectral traits with remote sensing. Ecological Indicators, 2018, 85(1): 190-203. [12] GIBRIL M B A, IDREES M O, YAO K, et al. Integrative image segmentation optimization and machine learning approach for high quality land-use and land-cover mapping using multisource remote sensing data. Journal of Applied Remote Sensing, 2018, 12(1): 016036. [13] HAOUAS F, DHIAF Z B, SOLAIMAN B.Fusion of spatial autocorrelation and spectral data for remote sensing image classification. In: Tunisia. The Proceedings of 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). American: IEEE Press, 2016: 537-542. [14] 朱钟正, 苏伟. 基于局部空间统计分析的SPOT 5影像分类. 遥感学报, 2011, 15(5): 957-972. [ZHU Z Z, SU W.The analysis of the classification of SPOT 5 image based on local spatial statistics. Journal of Remote Sensing, 2011, 15(5): 957-972.] [15] READ J M, LAM S N.Spatial methods for characterising land cover and detecting land-cover changes for the tropics. International Journal of Remote Sensing, 2002, 23(12): 2457-2474. [16] MONDINI A.Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection. Remote Sensing, 2017, 9(6): 554. [17] XIAN G, HOMER C, FRY J.Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 2009, 113(6): 1133-1147. [18] MORAN. Notes on continuous stochastic phenomena. Biometrika, 1950, 37(1/2): 17-23. [19] GEARY R C. The contiguity ratio and statistical mapping. Incorporated Stat, 1954, 5(3): 115-127, 129-146. [20] 张松林, 张昆. 全局空间自相关Moran指数和G系数对比研究. 中山大学学报: 自然科学版, 2007, 46(4): 93-97. [ZHANG S L, ZHANG K.Comparative study on Moran index and G coefficient of global spatial autocorrelation. Journal of Sun Yat-sen University: Natural Science, 2007, 46(4): 93-97.] [21] CARR J R, DE MIRANDA F P. The semivariogram in comparison to the co-occurrence matrix for classification of image texture. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1945-1952. [22] BREIMAN L.Random forests. Machine Learning, 2001, 45(1): 5-32. [23] RODRIGUEZ G V F, GHIMIRE B, ROGAN J, et al. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry & Remote Sensing, 2012, 67(1): 93-104. [24] 周志华. 《机器学习》. 北京: 清华大学出版社, 2016: 30-33. [ZHOU Z H. Machine Learning. Beijing: Tsinghua University Press, 2016: 30-33.] [25] 杨浩, 王子羿, 王婧, 等. 京津冀城市群土地利用变化对热环境的影响研究. 自然资源学报, 2018, 33(11): 54-67. [YANG H, WANG Z Y, WANG J, et al.Study on the influence of land use change on the thermal environment in Beijing-Tianjin-Hebei urban agglomeration. Journal of Natural Resources, 2018, 33(11): 54-67.] [26] 李广东, 方创琳, 王少剑, 等. 城乡用地遥感识别与时空变化研究进展. 自然资源学报, 2016, 31(4): 703-718. [LI G D, FANG C L, WANG S J, et al.Progress in remote sensing recognition and spatial-temporal changes study of urban and rural land use. Journal of Natural Resources, 2016, 31(4): 703-718.] [27] 孙立宁. 济南市建设用地节约集约利用评价研究. 山东: 山东建筑大学, 2015. [SUN L N.Evaluation and research on economical and intensive utilization of construction land in Jinan city. Shandong: Shandong Jianzhu University, 2015.] |