[1] 沈镭, 张红丽, 钟帅, 等. 新时代下中国自然资源安全的战略思考. 自然资源学报, 2018, 33(5): 721-734. [SHEN L, ZHANG H L, ZHONG S, et al.Strategic thinking on the security of natural resources of China in the new era. Journal of Natural Resources, 2018, 33(5): 721-734.] [2] 曾现来, 闫晓宇, 张宇平, 等. 中国资源的进出口与产出率: 演化、挑战及对策. 自然资源学报, 2018, 33(4): 552-562. [ZENG X L, YAN X Y, ZHANG Y P, et al.Importation, exportation, and productivity of resources in China: Evolution, challenges, and solutions. Journal of Natural Resources, 2018, 33(4): 552-562.] [3] 陈伟强. 中国铝存量与流量分析: 环境影响、需求模拟及政策启示. 北京: 清华大学, 2010. [CHEN W Q.Stocks and flows analysis of aluminum in China: Environmental impacts, future demand modelling and policy implications. Beijing: Tsinghua University, 2010.] [4] BRUNNER P H, RECHBERGER H.Practical Handbook of Material Flow Analysis. New York: Lewis Publishers, 2003. [5] MÜLLER E, HILTY L M, WIDMER R, et al. Modeling metal stocks and flows: A review of dynamic material flow analysis methods. Environmental Science & Technology. 2014, 48(4): 2102-2113. [6] CHEN W Q, GRAEDEL T E.In-use product stocks link manufactured capital to natural capital. Proceedings of the National Academy of Science, 2015, 112(20): 6265-6270. [7] GRAEDEL T E, CAO J.Metal spectra as indicators of development. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(49): 20905-20910. [8] PAULIUK S, MÜLLER D B. The role of in-use stocks in the social metabolism and in climate change mitigation. Global Environmental Change, 2014, 24(1): 132-142. [9] MÜLLER D B, LIU G, LOVIK A N, et al. Carbon emissions of infrastructure development. Environmental Science & Technology, 2013, 47(20): 11739-11746. [10] PAULIUK S, WANG T, MÜLLER D B. Moving toward the circular economy: The role of stocks in the Chinese steel cycle. Environmental Science & Technology, 2012, 46(1): 148-154. [11] PAULIUK S, MILFORD R L, MÜLLER D B, et al. The steel scrap age. Environmental Science & Technology, 2013, 47(7): 3448-3454. [12] PAULIUK S, WANG T, MÜLLER D B. Steel all over the world: Estimating in-use stocks of iron for 200 countries. Resources Conservation & Recycling, 2013, 71(1): 22-30. [13] ALLWOOD J M, CULLEN J M, MILFORD R L.Options for achieving a 50% cut in industrial carbon emissions by 2050. Environmental Science & Technology, 2010, 44(6): 1888-1894. [14] World Steel Association.Steel Statistical Yearbook 2016. Brussels, Belgium: World Steel Committee on Economic, 2016. [15] WANG T, MÜLLER D B, HASHIMOTO S. The ferrous find: Counting iron and steel stocks in China's economy. Journal of Industrial Ecology, 2015, 19(5): 877-889. [16] HU M, PAULIUK S, WANG T, et al.Iron and steel in Chinese residential buildings: A dynamic analysis. Resources Conservation & Recycling, 2010, 54(9): 591-600. [17] CHEN W Q, GRAEDEL T E.Anthropogenic cycles of the elements: A critical review. Environmental Science & Technology, 2012, 46(16): 8574-8586. [18] CHEN W Q, GRAEDEL T E.Dynamic analysis of aluminum stocks and flows in the United States: 1900-2009. Ecological Economics, 2012, 81(5): 92-102. [19] CHEN W Q, SHI L.Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production. Resources, Conservation and Recycling, 2012, 65: 18-28. [20] 陈伟强, 石磊, 常皛宇, 等. 1991—2007年中国铝物质流分析(Ⅰ): 全生命周期进出口核算及其政策启示. 资源科学, 2009, 31(11): 1887-1897. [CHEN W Q, SHI L, CHANG X Y, et al.Substance flow anaysis of aluminium in China for 1991-2007(Ⅰ): Trade of aluminium from a perspective of life cycle and its policy implications. Resources Science, 2009, 31(11): 1887-1897.] [21] 陈伟强, 石磊, 钱易. 1991—2007年中国铝物质流分析(Ⅱ): 全生命周期损失估算及其政策启示. 资源科学, 2009, 31(12): 2120-2129. [CHEN W Q, SHI L, QIAN Y.Substance flow analysis of aluminum in China for 1991-2007(Ⅱ): Quantity loss of aluminum from a perspective of life cycle and its policy omplications. Resources Science, 2009, 31(11): 2120-2129.] [22] MÜLLER D B, WANG T, DUVAL B, et al. Exploring the engine of anthropogenic iron cycles. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44): 16111-16116. [23] MELO M T.Statistical analysis of metal scrap generation: The case of aluminium in Germany. Resources Conservation & Recycling, 1999, 26(2): 91-113. [24] 国家统计局. 中国统计年鉴. s北京: 中国统计出版社, 2017. [National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistics Press, 2017.] [25] United Nations. World Population Prospects 2017. https://esa.un.org/unpd/wpp/. [26] 刘学敏, 张晨阳. 中国“城市矿产”开发潜力研究: 以报废汽车、家电、电子产品为例. 开发研究, 2016, (4): 121-127. [LIU X M, ZHANG C Y.The development of urban mining potential in China: A case study of vehicles, household appliances, and electronic products . Research on Development, 2016, (4): 121-127.] [27] LI M, SHAN R, HERNANDEZ M, et al.Effects of population, urbanization, household size, and income on electric appliance adoption in the Chinese residential sector towards 2050. Applied Energy, 2019, 236(15): 293-306. [28] MODARESI R, PAULIUK S, LØVIK A N, et al. Global carbon benefits of material substitution in passenger cars until 2050 and the impact on the steel and aluminum industries. Environmental Science & Technology, 2014, 48(18): 10776-10784. [29] PAULIUK S, DHANIATI N M, MÜLLER D B. Reconciling sectoral abatement strategies with global climate targets: The case of the Chinese passenger vehicle fleet. Environmental Science & Technology, 2012, 46(1): 140-147. [30] FIELD F R, WALLINGTON T J, EVERSON M P, et al.Strategic materials in the automobile: A comprehensive assessment of strategic and minor metals use in passenger cars and light trucks. Environmental Science & Technology, 2017, 51(24): 14436-14444. |