自然资源学报 ›› 2020, Vol. 35 ›› Issue (2): 449-459.doi: 10.31497/zrzyxb.20200216
邱冬冬1, 闫家国1, 张树岩2, 左佃龙3, 刘泽正1, 汪方芳1, 王青1, 崔保山1
收稿日期:
2018-11-20
修回日期:
2019-02-22
出版日期:
2020-02-28
发布日期:
2020-02-28
通讯作者:
崔保山(1967- ),男,河北沽源人,博士,教授,主要从事湿地生态过程与环境响应研究。E-mail: cuibs@bnu.edu.cn
作者简介:
邱冬冬(1992- ),男,山东东营人,博士研究生,主要从事湿地生态过程与环境响应研究。E-mail: qiudong329@163.com
基金资助:
QIU Dong-dong1, YAN Jia-guo1, ZHANG Shu-yan2, ZUO Dian-long3, LIU Ze-zheng1, WANG Fang-fang1, WANG Qing1, CUI Bao-shan1
Received:
2018-11-20
Revised:
2019-02-22
Online:
2020-02-28
Published:
2020-02-28
摘要: 鸟类是滨海湿地生态系统中非常重要的组成部分,也是能够通过自身行为影响非生物环境以及生物过程的生态系统工程师。了解鸟类在滨海湿地生态系统中的生态系统工程效应,对于开展滨海湿地的生态修复具有重要作用。通过野外调查研究由灰鹤(Grus grus)和斑嘴鸭(Anas poecilorhyncha)主导的滨海鸟类的刨坑觅食行为对植被退化区的地形以及土壤环境理化指标的影响,进而促进盐地碱蓬(Suaeda salsa)植被的恢复。结果表明:鸟类在植被退化区的刨坑觅食行为改变了退化区的微地形及土壤环境,使得土壤硬度和土壤盐度显著降低,而土壤含水率和土壤碳氮营养指标则显著高于未经鸟类影响的退化平坦区域;另外,鸟类活动改善的凹坑微地形环境能够显著提高盐地碱蓬的种子保留量、幼苗定植量和成株存活量,有效促进盐地碱蓬在植被退化区域的恢复。通过鸟类改变微地形进而促进植被恢复的启发,提出可以尝试人为模拟改造退化区的微地形环境,以通过人为干预的方式促进滨海湿地退化区的植被恢复,对滨海湿地的生态修复具有重要指导意义。
邱冬冬, 闫家国, 张树岩, 左佃龙, 刘泽正, 汪方芳, 王青, 崔保山. 滨海湿地退化区鸟类刨坑觅食行为促进植被的恢复[J]. 自然资源学报, 2020, 35(2): 449-459.
QIU Dong-dong, YAN Jia-guo, ZHANG Shu-yan, ZUO Dian-long, LIU Ze-zheng, WANG Fang-fang, WANG Qing, CUI Bao-shan. Foraging-associated hollows of birds facilitate the vegetation resilience in a degraded coastal saltmarsh ecosystem[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(2): 449-459.
[1] 唐龙, 高扬, 赵斌, 等. 生态系统工程师: 理论与应用. 生态学报, 2008, 28(7): 3344-3355. [TANG L, GAO Y, ZHAO B, et al.Ecosystem engineers: Theory and applications. Acta Ecologica Sinica, 2008, 28(7): 3344-3355.] [2] LAWTON J H, JONES C G.Linking species and ecosystem perspectives. Trends in Ecology and Evolution, 1993, 8(9): 311-313. [3] JONES C G, LAWTON J H, SHACHAK M.Organisms as ecosystem engineers. Oikos, 1994, 69(3): 373-386. [4] WRIGHT J P, JONES C G.Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology, 2004, 85(8): 2071-2081. [5] 邱冬冬, 路峰, 闫家国, 等. 滨海湿地生态系统工程师对潮间带土壤环境的影响机制. 北京师范大学学报: 自然科学版, 2018, 54(1): 9-16. [QIU D D, LU F, YAN J G, et al.Impact of ecosystem engineers on intertidal edaphic environment in coastal wetland: Mechanisms involved. Journal of Beijing Normal University: Natural Science, 2018, 54(1): 9-16.] [6] PALMER M L, MAZZOTTI F J.Structure of everglades alligator holes. Wetlands, 2004, 24(1): 115-122. [7] GUTIÉRREZ J L, JONES C G, GROFFMAN P M, et al. The contribution of crab burrow excavation to carbon availability in surficial salt-marsh sediments. Ecosystems, 2006, 9(4): 647-658. [8] THOMAS A R, BLUM L K.Importance of the fiddler crab Uca pugnax to salt marsh soil organic matter accumulation. Marine Ecology Progress, 2010, 412: 167-177. [9] DANGERFIELD J M, MCCARTHY T S, ELLERY W N.The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 2000, 14: 507-520. [10] KHAN S R, SINGH S K, RASTOGI N.Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: Implications for pollution-level assessment and bioremediation of coal mine soil. Environmental Monitoring and Assessment, 2017, 189: 195. [11] CEBALLOS G, PACHECO J, LIST R.Influence of prairie dogs (Cynomys ludovicianus) on habitat heterogeneity and mammalian diversity in Mexico. Journal of Arid Environments, 1999, 41: 161-172. [12] HAGENAH N, BENNETT N C.Mole rats act as ecosystem engineers within a biodiversity hotspot, the cape fynbos. Journal of Zoology, 2013, 289: 19-26. [13] VALDIVIA-HOEFLICH T, VEGA RIVERA J H, STONER K E. The citreoline trogon as an ecosystem engineer. Biotropica, 2005, 37(3): 465-467. [14] NTIAMOA-BAIDU Y, PIERSMA T, WIERSMA P, et al.Water depth selection, daily feeding routines and diets of water birds in coastal lagoons in Ghana. Ibis, 2010, 140(1): 89-103. [15] 朱书玉, 吕卷章, 赵长征, 等. 黄河三角洲国家级自然保护区鸻形目鸟类食性及觅食地的研究. 山东林业科技, 2000, (5): 10-13. [ZHU S Y, LYU J Z, ZHAO C Z, et al.Food preference and place of charadriiformes in the national nature reserve of the Yellow River Delta. Shandong Forestry Science and Technology, 2000, (5): 10-13.] [16] KUANG G M, ZHU Q K, LIU Z Q, et al.Effect of microrelief on the soil water and vegetation arrangement in loess hilly and gully region. Research of Soil and Water Conservation, 2012, 19: 74-77. [17] 卫伟, 余韵, 贾福岩, 等. 微地形改造的生态环境效应研究进展. 生态学报, 2013, 20(20): 6462-6469. [WEI W, YU Y, JIA F Y, et al.Research progress in the ecological effects of micro-landform modification. Acta Ecologica Sinica, 2013, 20(20): 6462-6469.] [18] BRULAND G L, RICHARDSON C J.Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland. Restoration Ecology, 2005, 13(3): 515-523. [19] BOUDELL J A, LINK S O, JOHANSEN J R.Effect of soil microtopography on seed bank distribution in the shrub-steppe. Western North American Naturalist, 2002, 62(1): 14-24. [20] CHANG E R, VEENEKLAAS R M, BUITENWERF R, et al.To move or not to move: Determinants of seed retention in a tidal marsh. Functional Ecology, 2008, 22(4): 720-727. [21] BALKE T, WEBB E L, VAN D E E, et al. Seedling establishment in a dynamic sedimentary environment: A conceptual framework using mangroves. Journal of Applied Ecology, 2013, 50(3): 740-747. [22] BOCHET E, sGARCÍA-FAYOS P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restoration Ecology, 2004, 12(2): 166-174. [23] GILLAND K E, MCCARTHY B C.Microtopography influences early successional plant communities on experimental coal surface mine land reclamation. Restoration Ecology, 2014, 22(2): 232-239. [24] MOSER K, AHN C, NOE G.Characterization of microtopography and its influence on vegetation patterns in created wetlands. Wetlands, 2007, 27: 1081-1097. [25] STALLINS J A.Geomorphology and ecology: Unifying themes for complex systems in biogeomorphology. Geomorphology, 2006, 77(3-4): 207-216. [26] LAMPELA M, JAUHIAINEN J, KÄMÄRI I, et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena, 2016, 139: 127-136. [27] SAKAI A, OHSAWA M.Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan. Ecological Research, 1993, 8(1): 47-56. [28] PÉREZ F L. Biogeomorphological influence of slope processes and sedimentology on vascular talus vegetation in the southern Cascades, California. Geomorphology, 2012, 138(1): 29-48. [29] 郑明喜, 解伏菊, 侯传美. 黄河三角洲退化湿地植被与土壤的恢复研究. 气象与环境学报, 2012, 28(1): 11-16. [ZHENG M X, XIE F J, HOU C M.Restoration of vegetation and soil in degraded wetland of the Yellow River Delta. Journal of Meteorology and Environment, 2012, 28(1): 11-16.] [30] 杨薇, 裴俊, 李晓晓, 等. 黄河三角洲退化湿地生态修复效果的系统评估及对策. 北京师范大学学报: 自然科学版, 2018, 54(1): 98-103. [YANG W, PEI J, LI X X, et al.Effect evaluation and management strategies for freshwater restoration projects in Yellow River Delta wetlands. Journal of Beijing Normal University: Natural Science, 2018, 54(1): 98-103.] [31] 孙志高, 牟晓杰, 陈小兵, 等. 黄河三角洲湿地保护与恢复的现状、问题与建议. 湿地科学, 2011, 9(2): 107-115. [SUN Z G, MU X J, CHEN X B, et al.Actualities, problems and suggestions of wetland protection and restoration in the Yellow River Delta. Wetland Science, 2011, 9(2): 107-115.] [32] 贺强. 黄河口盐沼植物群落的上行、种间和下行控制因子. 上海: 上海交通大学, 2013. [HE Q.Bottom-up, interspecific and top-down determinants of plant communities in salt marshes in the Yellow River Estuary. Shanghai: Shanghai Jiao Tong University, 2013.] [33] HU C, CAO W.Variation, regulation and control of flow and sediment in the Yellow River Estuary I: Mechanism of flow sediment transport and evolution. Journal of Sediment Research, 2003, 5: 1-8. [34] QIU D D, YAN J G, MA X, et al.Microtopographical modification by a herbivore facilitates the growth of a coastal saltmarsh plant. Marine Pollution Bulletin, 2019, 140: 431-442. [35] 任葳. 基于微地形营造的黄河三角洲退化滨海湿地修复模式研究. 呼和浩特: 内蒙古大学, 2017. [REN W.Study on the restoration of degraded coastal wetlands in the Yellow River Delta. Hohhot: Inner Mongolia University, 2017.] [36] IRIBARNE O, BORTOLUS A, BOTTO F.Between-habitat differences in burrow characteristics Atlantic burrowing crab Chasmagnathus granulate. Marine Ecology Progress, 1997, 155(8): 137-145. [37] SMITH N F, WILCOX C, LESSMANN J M.Fiddler crab burrowing affects growth and production of the white mangrove (Laguncularia racemosa) in a restored Florida coastal marsh. Marine Biology, 2009, 156(11): 2255-2266. [38] WARREN J H, UNDERWOOD A J.Effects of burrowing crabs on the topography of mangrove swamps in New South Wales. Journal of Experimental Marine Biology & Ecology, 1986, 102(2): 223-235. [39] BORTOLUS A, IRIBARNE O O.Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Marine Ecology Progress, 1999, 178(3): 79-88. [40] 陈芳清, HARTMAN J M.退化湿地生态系统的生态恢复与管理: 以美国Hackensack湿地保护区为例. 自然资源学报, 2004, 19(2): 217-223. [CHEN F Q, HARTMAN J M.The ecological restoration and management of degraded wetland ecosystem: A case study of Hackensack Meadowlands in America. Journal of Natural Resources, 2004, 19(2): 217-223.] [41] BRULAND G L, RICHARDSON C J.Hydrologic, edaphi, and vegetative responses to microtopographic reestablishment in a restored wetland. Restoration Ecology, 2005, 13: 515-523. [42] 李艳忠, 刘昌明, 刘小莽, 等. 植被恢复工程对黄河中游土地利用/覆被变化的影响. 自然资源学报, 2016, 31(12): 2005-2020. [LI Y Z, LIU C M, LIU X M, et al.Impact of the grain for green project on the land use/cover change in the Middle Yellow River. Journal of Natural Resources, 2016, 31(12): 2005-2020.] [43] WANG Q, CUI B S, LUO M.Effectiveness of microtopographic structure in species recovery in degraded salt marshes. Marine Pollution Bulletin, 2018, 133: 173-181. [44] 黄先飞, 周运超, 张珍明. 土地利用方式下土壤有机碳特征及影响因素: 以后寨河喀斯特小流域为例. 自然资源学报, 2018, 33(6): 1056-1067. [HUANG X F, ZHOU Y C, ZHANG Z M.Characteristics and affecting factors of soil organic carbon under land uses: A case study in Houzhai River Basin. Journal of Natural Resources, 2018, 33(6): 1056-1067.] |
[1] | 汪言在, 董一帆, 苏正安. 基于土地利用与植被恢复情景的土壤侵蚀演变特征[J]. 自然资源学报, 2020, 35(6): 1369-1380. |
[2] | 陈卓鑫, 王文龙, 郭明明, 王天超, 郭文召, 王文鑫, 康宏亮, 杨波, 赵满. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响[J]. 自然资源学报, 2020, 35(2): 387-398. |
[3] | 李冬雪, 李雨芩, 张珂豪, 马旭, 张树岩, 刘伟华, 车纯广, 崔保山. 黄河口典型潮沟土壤碳氮分布特征规律[J]. 自然资源学报, 2020, 35(2): 460-471. |
[4] | 张倩, 刘冰洁, 余璐, 王瑞瑞, 郑浩, 罗先香, 李锋民. 生物炭对滨海湿地盐碱土壤碳氮循环的影响[J]. 自然资源学报, 2019, 34(12): 2529-2543. |
[5] | 王新艳, 闫家国, 白军红, 崔保山. 黄河口滨海湿地水文连通对大型底栖动物生物连通的影响[J]. 自然资源学报, 2019, 34(12): 2544-2553. |
[6] | 栗忠飞, 高吉喜, 王亚萍. 内蒙古呼伦贝尔南部沙带植被恢复进程中土壤理化特性变化[J]. 自然资源学报, 2016, 31(10): 1739-1750. |
[7] | 许鑫王豪, 赵一飞, 邹欣庆, 唐得昊, 刘大伟. 中国滨海湿地CH4通量研究进展[J]. 自然资源学报, 2015, 30(9): 1594-1605. |
[8] | 欧维新, 肖锦成, 李文昊. 基于BP-CA的海滨湿地利用空间格局优化模拟研究——以大丰海滨湿地为例[J]. 自然资源学报, 2014, 29(5): 744-756. |
[9] | 许鑫王豪, 赵一飞, 邹欣庆, 杨雯, 曹立国, 成海. 盐城滨海湿地表层沉积物有机碳特征[J]. 自然资源学报, 2014, 29(11): 1957-1967. |
[10] | 郑江坤,魏天兴,朱金兆,赵 健,陈致富,朱文德,大林直. 黄土丘陵区自然恢复与人工修复流域生态效益对比分析[J]. 自然资源学报, 2010, 25(6): 990-1000. |
[11] | 张健, 刘国彬. 黄土丘陵区不同植被恢复模式对沟谷地植物群落生物量和物种多样性的影响[J]. 自然资源学报, 2010, 25(2): 207-217. |
[12] | 徐玲玲, 张玉书, 陈鹏狮, 毛留喜. 近20年盘锦湿地变化特征及影响因素分析[J]. 自然资源学报, 2009, 24(3): 483-490. |
[13] | 郭忠升, 邵明安. 土壤水分植被承载力研究成果在实践中的应用[J]. 自然资源学报, 2009, 24(12): 2187-2193. |
[14] | 张笑培, 杨改河, 胡江波, 王得祥. 不同植被恢复模式对黄土高原丘陵沟壑区土壤水分生态效应的影响[J]. 自然资源学报, 2008, 23(4): 635-642. |
[15] | 薛萐, 刘国彬, 戴全厚, 党小虎, 周萍. 不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响[J]. 自然资源学报, 2007, 22(1): 20-27. |
|