自然资源学报 ›› 2020, Vol. 35 ›› Issue (2): 387-398.doi: 10.31497/zrzyxb.20200211
陈卓鑫1, 王文龙1,2, 郭明明1, 王天超1, 郭文召1, 王文鑫1, 康宏亮1, 杨波3, 赵满1
收稿日期:
2019-04-02
修回日期:
2019-07-05
出版日期:
2020-02-28
发布日期:
2020-02-28
通讯作者:
王文龙(1964- ),男,陕西大荔人,博士,研究员,主要从事土壤侵蚀和水土保持研究。E-mail: wlwang@nwsuaf.edu.cn
作者简介:
陈卓鑫(1994- ),男,湖南邵阳人,硕士,主要从事土壤侵蚀研究。E-mail: xiyu.zxchen@foxmail.com
基金资助:
CHEN Zhuo-xin1, WANG Wen-long1,2, GUO Ming-ming1, WANG Tian-chao1, GUO Wen-zhao1, WANG Wen-xin1, KANG Hong-liang1, YANG Bo3, ZHAO Man1
Received:
2019-04-02
Revised:
2019-07-05
Online:
2020-02-28
Published:
2020-02-28
摘要: 通过采集不同地貌部位(塬面、塬坡和沟坡)各土地利用(农地、草地、灌木地和林地)坡面土壤和根系样品,采用综合土壤可蚀性指数(CSEI)评价了植被恢复对土壤可蚀性的影响。结果表明:(1)不同地貌部位的CSEI差异显著,沟坡CSEI较塬坡和塬面分别增加8.1%和77.7%。(2)塬面草地、灌木地和林地的CSEI较农地分别降低21.1%、29.2%和28.8%;而塬坡和沟坡林地CSEI均低于其他土地利用。(3)CSEI与粘粒含量、砂粒含量、毛管孔隙度、根重密度、根平均直径、根长密度及根表面积密度均呈极显著负相关,而与粉粒含量和土壤容重呈显著正相关关系;粉粒含量、土壤容重和根重密度是影响CSEI的关键因素,其中粉粒含量对CSEI的直接影响最大,而根重密度通过直接或间接作用对CSEI产生负相关影响。建议在塬面上以灌木作为植被恢复模式的首选,而在塬坡和沟坡上选择以乔木为优势群落的恢复模式对水土流失的控制更为有效。
陈卓鑫, 王文龙, 郭明明, 王天超, 郭文召, 王文鑫, 康宏亮, 杨波, 赵满. 黄土高塬沟壑区植被恢复对不同地貌部位土壤可蚀性的影响[J]. 自然资源学报, 2020, 35(2): 387-398.
CHEN Zhuo-xin, WANG Wen-long, GUO Ming-ming, WANG Tian-chao, GUO Wen-zhao, WANG Wen-xin, KANG Hong-liang, YANG Bo, ZHAO Man. Effects of vegetation restoration on soil erodibility on different geomorphological locations in the loess-tableland and gully region of the Loess Plateau[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(2): 387-398.
[1] 李娅芸, 刘雷, 安韶山, 等. 应用Le Bissonnais法研究黄土丘陵区不同植被区及坡向对土壤团聚体稳定性和可蚀性的影响. 自然资源学报, 2016, 31(2): 287-298. [LI Y Y, LIU L, AN S S, et al.Research on the effect of vegetation and slope aspect on the stability and erodibility of soil aggregate in loess hilly region based on Le Bissonnais method. Journal of Natural Resources, 2016, 31(2): 287-298.] [2] WANG B, ZHANG G H, SHI Y Y, et al.Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surface Processes and Landforms, 2013, 38: 1725-1734. [3] ZHANG B J, ZHANG G H, YANG H Y, et al.Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China. Catena, 2019, 173: 375-383. [4] GUO M M, WANG W L, LIANG K H, et al.Changes in soil properties and erodibility of gully heads induced by vegetation restoration on the Loess Plateau, China. Journal of Arid Land, 2018, 10(5): 712-725. [5] ZHANG X P, ZHANG L, ZHAO J, et al.Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resources Research, 2008, 44(7): 2183-2188. [6] 魏慧, 赵文武, 王晶. 土壤可蚀性研究述评. 应用生态学报, 2017, 28(8): 2749-2759. [WEI H, ZHAO W W, WANG J.Research progress on soil erodibility. Chinese Journal of Applied Ecology. 2017, 28(8): 2749-2759.] [7] HAWLEY M E, JACKSON T J, MCCUEN R H.Surface soil moisture variation on small agricultural watersheds. Journal of Hydrology, 1983, 62: 179-200. [8] CHARPENTIER M A, GROFFMAN P M.Soil moisture variability within remote sensing pixels. Journal of Geophysical Research Atmospheres, 1992, 97(D17): 18987-18995. [9] HUO Z, SHAO M A, HORTON R.Impact of gully on soil moisture of shrubland in wind-water erosion crisscross region of the Loess Plateau. Pedosphere, 2008, 18(5): 674-680. [10] GAO X D, WU P T, ZHAO X N, et al.Soil moisture variability along transects over a well-developed gully in the Loess Plateau, China. Catena, 2011, 87: 357-367. [11] ZIADAT F M, TAIMEH A Y, HATTAR B I.Variation of soil physical properties and moisture content along toposequences in the arid to semiarid area. Arid Land Research and Management, 2010, 24: 81-97. [12] AN S S, DARBOUX F, CHENG M.Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma,2013, 209-210: 75-85. [13] 孙龙, 张光辉, 王兵, 等. 黄土高原不同退耕年限刺槐林地土壤侵蚀阻力. 农业工程学报, 2017, 33(10): 191-197. [SUN L, ZHANG G H, WANG B, et al.Soil erosion resistance of black locust land with different ages of returning farmland on Loess Plateau. Transactions of the CSAE, 2017, 33(10): 191-197.] [14] CHEN X Y, ZHOU J.Volume-based soil particle fractal relation with soil erodibility in a small watershed of purple soil. Environmental Earth Sciences, 2013, 70: 1735-1746. [15] KNAPEN A, POESEN J, GOVERS G, et al.Resistance of soils to concentrated flow erosion: A review. Earth-Science Reviews, 2007, 80: 75-109. [16] ZHANG K, LI S, PENG W, et al.Erodibility of agricultural soils on the Loess Plateau of China. Soil & Tillage Research, 2004, 76: 157-165. [17] LI Z W, ZHANG G H, GENG R, et al.Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China. Biosystems Engineering, 2015, 129: 248-257. [18] PARSAKHOO A, LOTFALIAN M, ATAOLLAH K, et al.Assessment of soil erodibility and aggregate stability for different parts of a forest road. Journal of Forestry Research, 2014, 25(1): 193-200. [19] DE BAETS S, POESEN J, GYSSELS G, et al.Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 2006, 76: 54-67. [20] 夏露, 宋孝玉, 符娜, 等. 黄土高塬沟壑区绿水对土地利用和气候变化的响应研究: 以南小河沟流域为例. 水利学报, 2017, 48(6): 678-688. [XIA L, SONG X Y, FU N, et al.Impacts of land use change and climate variation on green water in the Loess Plateau Gully region: A case study of Nanxiaohegou Basin. Journal of Hydraulic Engineering, 2017, 48(6): 678-688.] [21] 康宏亮. 黄土高塬沟壑区土地利用方式对沟头溯源侵蚀过程的影响. 杨凌: 西北农林科技大学, 2017. [KANG H L.Effect of landuse on gully headward erosion process in the gully region of the Loess Plateau. Yangling: Northwest A&F University, 2017.] [22] WANG B, ZHANG G H, SHI Y Y, et al.Soil detachment by overland flow under different vegetation restoration models in the Loess Plateau of China. Catena, 2014, 116: 51-59. [23] LI Y Y, SHAO M A.Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. Journal of Arid Environments, 2006, 64: 77-96. [24] WILLIAMS J R, ARNOLD J G.A system of erosion-sediment yield models. Soil Technology, 1997, 11(1): 43-55. [25] WANG H, ZHANG G H, LI N N, et al.Soil erodibility influenced by natural restoration time of abandoned farmland on the Loess Plateau of China. Geoderma, 2018, 325: 18-27. [26] 陈正发, 史东梅, 金慧芳, 等. 基于土壤管理评估框架的云南坡耕地耕层土壤质量评价. 农业工程学报, 2019, 35(3): 256-267. [CHEN Z F, SHI D M, JIN H F, et al.Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework (SMAF). Transactions of the CSAE, 2019, 35(3): 256-267.] [27] LI Q, LIU G B, ZHANG Z, et al.Relative contribution of root physical enlacing and biochemistrical exudates to soil erosion resistance in the Loess soil. Catena, 2017, 153: 61-65. [28] BI H, ZHANG J, ZHU J, et al.Spatial dynamics of soil moisture in a complex terrain in the semi-arid Loess Plateau Region, China. Journal of the American Water Resources Association, 2008, 44(5): 1121-1131. [29] ZHENG J Y, WANG L M, SHAO M A, et al.Gully impact on soil moisture in the gully bank. Pedosphere, 2006, 16(3): 339-344. [30] 谢云, 刘宝元, 伍永秋. 切沟中土壤水分的空间变化特征. 地球科学进展, 2002, 17(2): 278-282. [XIE Y, LIU B Y, WU Y Q.Spatia distributio n of soil m oistures in a gully watershed. Advances in Earth Science, 2002, 17(2): 278-282.] [31] GAO X D, WU P T, ZHAO X N, et al.Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. Journal of Hydrology, 2013, 486: 466-478. [32] MELLIGER J J, NIEMANN J D.Effects of gullies on space-time patterns of soil moisture in a semiarid grassland. Journal of Hydrology, 2010, 389: 289-300. [33] DUAN L X, HUANG M B, ZHANG L D.Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China. Journal of Hydrology, 2016, 537: 356-366. [34] ELSEN E V D, XIE Y, LIU B Y, et al. Intensive water content and discharge measurement system in a hillslope gully in China. Catena, 2003, 54: 93-115. [35] HUPET F, VANCLOOSTER M.Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field. Journal of Hydrology, 2002, 261: 86-101. [36] WANG H, ZHANG G H, LI N N, et al.Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena, 2019, 174: 24-35. [37] YE L P, TAN W F, FANG L C, et al.Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: I. Spatial variability. Soil & Tillage Research, 2018, 179: 71-81. [38] KNAPEN A, POESEN J, GOVERS G, et al.The effect of conservation tillage on runoff erosivity and soil erodibility during concentrated flow. Hydrological Processes, 2008, 22: 1497-1508. [39] XIAO L, XUE S, LIU G B.Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. Journal of Arid Land, 2014, 6(5): 550-560. [40] LI Q, LIU G B, ZHANG Z, et al.Effect of root architecture on structural stability and erodibility of topsoils during concentrated flow in Hilly Loess Plateau. Chinese Geographical Science, 2015, 25(6): 757-764. [41] 刘宝元, 张科利, 焦菊英. 土壤可蚀性及其在侵蚀预报中的应用. 自然资源学报, 1999, 14(4): 345-350. [LIU B Y, ZHANG K L, JIAO J Y.Soil erodibility and its use in soil erosion prediction model. Journal of Natural Resources, 1999, 14(4): 345-350.] [42] 郭明明, 王文龙, 康宏亮, 等. 黄土高塬沟壑区植被自然恢复年限对坡面土壤抗冲性的影响. 农业工程学报, 2018, 34(22): 138-146. [GUO M M, WANG W L, KANG H L, et al.Effect of natural vegetation restoration age on slope soil anti-scourability in gully region of Loess Plateau. Transactions of the CSAE, 2018, 34(22): 138-146.] |
[1] | 周才钰, 许有鹏, 刘鹏飞, 王强, 王杰. 东部湿润区典型小流域土地利用的土壤水效应[J]. 自然资源学报, 2021, 36(2): 490-500. |
[2] | 李明珍, 李阳兵, 冉彩虹. 土地利用转型背景下的乡村景观格局演变响应——基于草堂溪流域的样带分析[J]. 自然资源学报, 2020, 35(9): 2283-2298. |
[3] | 蒋伟萱, 高金龙, 陈江龙, 张英浩. 基于土地利用视角的乡村居业协同多尺度分析——以徐州市为例[J]. 自然资源学报, 2020, 35(8): 2002-2013. |
[4] | 王晓艺, 苏正安, 马菁, 杨鸿琨, 何周窈, 周涛. 河北坝上与坝下不同土地利用类型土壤入渗特征及其影响因素[J]. 自然资源学报, 2020, 35(6): 1360-1368. |
[5] | 汪言在, 董一帆, 苏正安. 基于土地利用与植被恢复情景的土壤侵蚀演变特征[J]. 自然资源学报, 2020, 35(6): 1369-1380. |
[6] | 燕守广, 李辉, 李海东, 张银龙. 基于土地利用与景观格局的生态保护红线生态系统健康评价方法——以南京市为例[J]. 自然资源学报, 2020, 35(5): 1109-1118. |
[7] | 张悦悦, 李翠珍, 周德, 夏浩. 乡村振兴视域下农村土地利用利益相关者分析[J]. 自然资源学报, 2020, 35(5): 1132-1146. |
[8] | 廖伟华, 聂鑫, 蒋卫国. 基于序列模式的土地利用变化分析——以广西壮族自治区为例[J]. 自然资源学报, 2020, 35(5): 1160-1171. |
[9] | 张宇硕, 吴殿廷, 吕晓. 土地利用/覆盖变化对生态系统服务的影响:空间尺度视角的研究综述[J]. 自然资源学报, 2020, 35(5): 1172-1189. |
[10] | 李珊珊, 李阳兵, 王萌萌, 罗光杰. 基于微空间单元的岩溶峡谷区土地利用结构演变[J]. 自然资源学报, 2020, 35(4): 908-924. |
[11] | 卢龙辉, 陈福军, 许月卿, 黄安, 黄玲. 京津冀“生态系统服务转型”及其空间格局[J]. 自然资源学报, 2020, 35(3): 532-545. |
[12] | 王洁, 摆万奇, 田国行. 土地利用生态风险评价研究进展[J]. 自然资源学报, 2020, 35(3): 576-585. |
[13] | 杨静涵, 刘梦云, 张杰, 张萌萌, 曹润珊, 曹馨悦. 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素[J]. 自然资源学报, 2020, 35(3): 743-754. |
[14] | 邱冬冬, 闫家国, 张树岩, 左佃龙, 刘泽正, 汪方芳, 王青, 崔保山. 滨海湿地退化区鸟类刨坑觅食行为促进植被的恢复[J]. 自然资源学报, 2020, 35(2): 449-459. |
[15] | 张文强, 孙从建, 李新功. 晋西南黄土高原区植被覆盖度变化及其生态效应评估[J]. 自然资源学报, 2019, 34(8): 1748-1758. |
|