自然资源学报 ›› 2020, Vol. 35 ›› Issue (2): 371-386.doi: 10.31497/zrzyxb.20200210
王亚慧1,2, 戴尔阜1,2, 马良1,2, 尹乐1,2
收稿日期:
2018-12-18
修回日期:
2019-06-20
出版日期:
2020-02-28
发布日期:
2020-02-28
通讯作者:
戴尔阜(1972- ),男,甘肃平凉人,博士,研究员,主要从事土地利用与气候变化对生态系统的影响研究。E-mail: daief@igsnrr.ac.cn
作者简介:
王亚慧(1990- ),女,山西长治人,博士,主要从事土地利用及生态过程研究。E-mail: wangyah.15b@igsnrr.ac.cn
基金资助:
WANG Ya-hui1,2, DAI Er-fu1,2, MA Liang1,2, YIN Le1,2
Received:
2018-12-18
Revised:
2019-06-20
Online:
2020-02-28
Published:
2020-02-28
摘要: 运用InVEST模型产水模块开展横断山区1990-2015年产水的量化评估,并开展相应的时空特征及影响因素分析。结果表明:(1)空间分布上,横断山区产水量均表现为南高北低的空间格局,垂直方向上,产水能力随着海拔的增加呈减小趋势。(2)1990-2015年产水深度表现为先小幅增大后明显减小再小幅增大的波动变化趋势。(3)不同土地利用类型的平均产水能力差异较大。其中以建设用地产水能力最强,约为550~920 mm;林地、草地居中,分别为438~650 mm和412~580 mm;未利用地和水域产水能力最弱,分别为273~457 mm和56~237 mm。(4)产水量空间分布与海拔及草地比例呈现显著的负相关,与降水量及林地比例呈显著正相关;时间变化上产水量与降水量呈显著正相关关系。该研究有助于推进山区生态系统服务研究的发展,其结果可为横断山区流域水资源管理、维持区域可持续发展提供科学支撑。
王亚慧, 戴尔阜, 马良, 尹乐. 横断山区产水量时空分布格局及影响因素研究[J]. 自然资源学报, 2020, 35(2): 371-386.
WANG Ya-hui, DAI Er-fu, MA Liang, YIN Le. Spatiotemporal and influencing factors analysis of water yield in the Hengduan Mountain region[J]. JOURNAL OF NATURAL RESOURCES, 2020, 35(2): 371-386.
[1] COSTANZA R, D'ARGE R, GROOT R D, et al. The value of the world's ecosystem services and natural capital. Nature, 1997, 387: 253-260. [2] Millennium Ecosystem Assessment.Ecosystems and Human Well-Being. Washington D.C.: Island Press, 2005. [3] FABER J H, VAN W J.Elaborations on the use of the ecosystem services concept for application in ecological risk assessment for soils. Science of the Total Environment, 2012, 415(2): 3-8. [4] 陈万旭, 李江风, 朱丽君. 长江中游地区生态系统服务价值空间分异及敏感性分析. 自然资源学报, 2019, 34(2): 325-337. [CHEN W X, LI J F, ZHU L J.Spatial heterogeneity and sensitivity analysis of ecosystem services value in the Middle Yangtze River region. Journal of Natural Resources, 2019, 34(2): 325-337.] [5] 戴尔阜, 王晓莉, 朱建佳, 等. 生态系统服务权衡/协同研究进展与趋势展望. 地球科学进展, 2015, 30(11): 1250-1259. [DAI E F, WANG X L, ZHU J J, et al.Progress and perspective on ecosystem services trade-offs. Advances in Earth Science, 2015, 30(11): 1250-1259.] [6] 戴尔阜, 王晓莉, 朱建佳, 等.生态系统服务权衡: 方法、模型与研究框架. 地理研究, 2016, 35(6): 1005-1016. [DAI E F, WANG X L, ZHU J J, et al.Methods, tools and research framework of ecosystem service trade-offs. Geographical Research, 2016, 35(6): 1005-1016.] [7] AJAZ AHMED M A, ABD- ELRAHMAN A, ESCOBEDO F J, et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. Journal of Environmental Management, 2017, 199: 158-171. [8] SANCHEZ-CANALES M, BENITO A L, PASSUELLO A, et al.Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Science of the Total Environment, 2012, 440(1): 140-153. [9] 张彪, 李文华, 谢高地, 等. 森林生态系统的水源涵养功能及其计量方法. 生态学杂志, 2009, 28(3): 529-534. [ZHANG B, LI W H, XIE G D, et al.Water conservation function and its measurement methods of forest ecosystem. Chinese Journal of Ecology, 2009, 28(3): 529-534.] [10] 张福平, 李肖娟, 冯起, 等. 基于InVEST模型的黑河流域上游水源涵养量. 中国沙漠, 2018, 38(6): 1321-1329. [ZHANG F P, LI X J, FENG Q, et al.Spatial and temporal variation of water conservation in the upper reaches of Heihe River Basin Based on InVEST model. Journal of Desert Research, 2018, 38(6): 1321-1329.] [11] 孙小银, 郭洪伟, 廉丽姝, 等. 南四湖流域产水量空间格局与驱动因素分析. 自然资源学报, 2017, 32(4): 669-679. [SUN X Y, GUO H W, LIAN L S, et al.The spatial pattern of wateryield and its driving factors in Nansi Lake Basin. Journal of Natural Resources, 2017, 32(4): 669-679.] [12] SHARP R, TALLIS H T, RICKETTS T, et al.InVEST 3.2.0 User's Guide. Stanford: The Natural Capital Project, 2015. [13] 潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化. 应用生态学报, 2013, 24(1): 183-189. [PAN T, WU S H, DAI E F, et al.Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model. Chinese Journal of Applied Ecology, 2013, 24(1): 183-189.] [14] JIANG C, LI D, WANG D, et al.Quantification and assessment of changes in ecosystem service in the Three-River Headwaters region, China as a result of climate variability and land cover change. Ecological Indicators, 2016, 66: 199-211. [15] WANG J, PENG J, ZHAO M, et al.Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-Western Yunnan, China. Science of the Total Environment, 2017, 574: 57-64. [16] 王鹏涛, 张立伟, 李英杰, 等. 汉江上游生态系统服务权衡与协同关系时空特征. 地理学报, 2017, 72(11): 2064-2078. [WANG P T, ZHANG L W, LI Y J, et al.Spatio-temporal characteristics of the trade-off and synergy relationships among multiple ecosystem services in the upper reaches of Hanjiang River Basin. Acta Geographica Sinica, 2017, 72(11): 2064-2078.] [17] MILLY P C, DUNNE K A, VECCHIA A V.Global pattern of trends in streamflow and water availability in a changing climate. Nature, 2005, 438(7066): 347-350. [18] COHEN S, KETTNER A J, SYVITSKI J P M. Global suspended sediment and water discharge dynamics between 1960 and 2010: Continental trends and intra-basin sensitivity. Global and Planetary Change, 2014, 115(11): 44-58. [19] BRAUMAN K A, DAILY G C, DUARTE T K, et al.The nature and value of ecosystem services: An overview highlighting hydrologic services. Social Science Electronic Publishing, 2007, 32(1): 67-98. [20] ZIEGLER A D, SHEFFIELD J, MAURER E P, et al.Detection of intensification in global- and continental-scale hydrological cycles: Temporal scale of evaluation. Journal of Climate, 2003, 16(3): 535-547. [21] ENNAANAY D.Impacts of land use changes on the hydrologic regime in the Minnesota River Basin. Minneapolis: University of Minnesota, 2006. [22] 吴健, 李英花, 黄利亚, 等. 东北地区产水量时空分布格局及其驱动因素. 生态学杂志, 2017, 36(11): 3216-3223. [WU J, LI Y H, HUANG L Y, et al.Spatiotemporal variation of water yield and its driving factors in Northeast China. Chinese Journal of Ecology, 2017, 36(11): 3216-3223.] [23] 樊杰. 中国主体功能区划方案. 地理学报, 2015, 70(2): 186-201. [FAN J.Draft of major function oriented zoning of China. Acta Geographica Sinica, 2015, 70(2): 186-201.] [24] 张荣祖, 郑度, 杨勤业, 等. 横断山区自然地理. 北京: 科学出版社, 1997. [ZHANG R Z, ZHENG D, YANG Q Y, et al.Physical Geography of Hengduan Mountain Area. Beijing: China Science Press, 1997.] [25] WANG Y, DAI E, YIN L, et al.Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosystem Services, 2018, 34: 55-67. [26] 钟祥浩. 中国山地生态安全屏障保护与建设. 山地学报, 2008, 26(1): 2-11. [ZHONG X H.Study of protection and construction of mountain ecological security barrier in China. Journal of Mountain Science, 2008, 26(1): 2-11.] [27] 陆大道, 陈明星. 关于“国家新型城镇化规划(2014-2020)”编制大背景的几点认识. 地理学报, 2015, 70(2): 179-185. [LU D D, CHEN M X.Several viewpoints on the background of compiling the "National New Urbanization Planning (2014-2020)". Acta Geographica Sinica, 2015, 70(2): 179-185.] [28] 刘彦随. 中国新时代城乡融合与乡村振兴. 地理学报, 2018, 73(4): 637-650. [LIU Y S.Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geographica Sinica, 2018, 73(4): 637-650.] [29] CHEN L, XIE G, ZHANG C, et al.Modelling ecosystem water supply services across the Lancang River Basin. Journal of Resources and Ecology, 2011, 2(4): 322-327. [30] 林世伟, 武瑞东. “三江并流”区生态系统供水服务的空间分布特征. 西部林业科学, 2015, 44(3): 8-15. [LIN S W, WU R D.The spatial pattern of water supply ecosystem services in the Three Parallel Rivers region. Journal of West China Forestry Science, 2015, 44(3): 8-15.] [31] 杨勤业, 郑度. 横断山区综合自然区划纲要. 山地研究, 1989, 7(1): 56-64. [YANG Q Y, ZHENG D.An outline of physic-geographic regionalization of the Hengduan Mountainous region. Mountain Research, 1989, 7(1): 56-64.] [32] LIU J Y, ZHANG Z, XU X, et al.Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 2010, 20(4): 483-494. [33] ZHANG L, DAWES W R, WALKER G R.Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001, 37(3): 701-708. [34] 尹云鹤, 吴绍洪, 戴尔阜. 1971-2008年我国潜在蒸散时空演变的归因. 科学通报, 2010, 55(2): 2226-2234. [YIN Y H, WU S H, DAI E F.Spatial and temporal attribution of potential evapo-transpiration China during the period of 1971-2008. Chinese Science Bulletin, 2010, 55(2): 2226-2234.] [35] ZHOU W, LIU G, PAN J, et al.Distribution of available soil water capacity in China. Journal of Geographical Sciences, 2005, 15(1): 3-12. [36] 金小麟. 水源涵养的计量研究. 贵州林业科技, 1990, 18(3): 64-72. [JIN X L.Quantitative study on water conservation of forest. Guizhou Forestry Science and Technology, 1990, 18(3): 64-72.] [37] FARLEY K A, JOBBAGY E G, JACKSON R B.Effects of afforestation on water yield: A global synthesis with implications for policy. Global Change Biology, 2005, 11(10): 1565-1576. [38] 顾东娟. 长株潭城市群土地利用/覆被变化的水文水资源效应分析. 长沙: 湖南师范大学, 2014. [GU D J.Analysis on effects of land use and land cover change on hydrology and water resource in Changsha-Zhuzhou-Xiangtan Agglomeration. Changsha: Hunan Normal University, 2014.] [39] 徐洁, 肖玉, 谢高地, 等. 东江湖流域水供给服务时空格局分析. 生态学报, 2016, 36(15): 4892-4906. [XU J, XIAO Y, XIE G D, et al.Spatiotemporal analysis of water supply service in the Dongjiang Lake Basin. Acta Ecologica Sinica, 2016, 36(15): 4892-4906.] [40] 李士美, 谢高地, 张彩霞, 等. 森林生态系统水源涵养服务流量过程研究. 自然资源学报, 2010, 25(4): 585-593. [LI S M, XIE G D, ZHANG C X, et al.Analysis on the function of conservation water of the Chinese forest ecosystem. Journal of Natural Resources, 2010, 25(4): 585-593.] [41] 周李磊, 杨华, 刘睿, 等. 基于TRMM数据的西南地区年降水时空特征研究. 重庆师范大学学报: 自然科学版, 2017, (1): 114-122. [ZHOU L L, YANG H, LIU R, et al.Spatial-temporal characteristics of annual precipitation in Southwest China based on TRMM 3B43 V7 data. Journal of Chongqing Normal University: Natural Science, 2017, (1): 114-122.] [42] 贺晋云, 张明军, 王鹏, 等. 近50年西南地区极端干旱气候变化特征. 地理学报, 2011, 66(9): 1179-1190. [HE J Y, ZHANG M J, WANG P, et al.Climate characteristics of the extreme drought events in Southwest China during recent 50 years. Acta Geographica Sinica, 2011, 66(9): 1179-1190.] [43] 王明田, 王翔, 黄晚华, 等. 基于相对湿润度指数的西南地区季节性干旱时空分布特征. 农业工程学报, 2012, 28(19): 85-92. [WANG M T, WANG X, HUANG W H, et al.Temporal and spatial distribution of seasonal drought in southwest of China based on relative moisture index. Transactions of the CSAE, 2012, 28(19): 85-92.] [44] 谢余初, 巩杰, 齐姗姗, 等. 基于InVEST模型的白龙江流域水源供给服务时空分异. 自然资源学报, 2017, 32(8): 1337-1347. [XIE Y C, GONG J, QI S S, et al.Spatio-temporal variation of water supply service in Bailong River Watershed based on InVEST model. Journal of Natural Resources, 2017, 32(8): 1337-1347.] |
[1] | 孙永胜, 佟连军. 吉林省限制开发区域资源环境承载力综合评价[J]. 自然资源学报, 2021, 36(3): 634-645. |
[2] | 胡其玉, 陈松林. 基于生态系统服务供需的厦漳泉地区生态网络空间优化[J]. 自然资源学报, 2021, 36(2): 342-355. |
[3] | 赵雪雁, 杜昱璇, 李花, 王伟军. 黄河中游城镇化与生态系统服务耦合关系的时空变化[J]. 自然资源学报, 2021, 36(1): 131-147. |
[4] | 刘晶晶, 王静, 戴建旺, 翟天林, 李泽慧. 黄河流域县域尺度生态系统服务供给和需求核算及时空变异[J]. 自然资源学报, 2021, 36(1): 148-161. |
[5] | 谢丽霞, 白永平, 车磊, 乔富伟, 孙帅帅, 杨雪荻. 基于价值—风险的黄河上游生态功能区生态分区建设[J]. 自然资源学报, 2021, 36(1): 196-207. |
[6] | 贾建辉, 陈建耀, 龙晓君, 陈记臣. 水电开发对河流生态系统服务的效应评估与时空变化特征分析——以武江干流为例[J]. 自然资源学报, 2020, 35(9): 2163-2176. |
[7] | 刘春芳, 王韦婷, 刘立程, 李鹏杰. 西北地区县域生态系统服务的供需匹配——以甘肃古浪县为例[J]. 自然资源学报, 2020, 35(9): 2177-2190. |
[8] | 牛善栋, 方斌, 崔翠, 黄仕辉. 乡村振兴视角下耕地利用转型的时空格局及路径分析——以淮海经济区为例[J]. 自然资源学报, 2020, 35(8): 1908-1925. |
[9] | 耿甜伟, 陈海, 张行, 史琴琴, 刘迪. 基于GWR的陕西省生态系统服务价值时空演变特征及影响因素分析[J]. 自然资源学报, 2020, 35(7): 1714-1727. |
[10] | 柳冬青, 曹二佳, 张金茜, 巩杰, 燕玲玲. 甘肃白龙江流域水源涵养服务时空格局及其影响因素[J]. 自然资源学报, 2020, 35(7): 1728-1743. |
[11] | 任正超, 朱华忠, 史华, 柳小妮. 最后间冰期至未来2070s中国潜在自然植被时空分布格局及其对气候变化的响应[J]. 自然资源学报, 2020, 35(6): 1484-1498. |
[12] | 燕守广, 李辉, 李海东, 张银龙. 基于土地利用与景观格局的生态保护红线生态系统健康评价方法——以南京市为例[J]. 自然资源学报, 2020, 35(5): 1109-1118. |
[13] | 张宇硕, 吴殿廷, 吕晓. 土地利用/覆盖变化对生态系统服务的影响:空间尺度视角的研究综述[J]. 自然资源学报, 2020, 35(5): 1172-1189. |
[14] | 宋洋, 朱道林, 张立新, 张晖. 2000年以来黄河流域土地市场化时空格局演变及驱动因素[J]. 自然资源学报, 2020, 35(4): 799-813. |
[15] | 和娟, 师学义, 付扬军. 基于生态系统服务的汾河源头区域生态安全格局优化[J]. 自然资源学报, 2020, 35(4): 814-825. |
|