[1] 李扬. 中国经济新常态与改革创新. 中国人大, 2016, (1): 16-23. [LI Y.Reform and innovation of China's economy in the new normal period. The People's Congress of China, 2016, (1): 16-23.] [2] ZUBERI M J S, PATEL M K. Bottom-up analysis of energy efficiency improvement and CO2, emission reduction potentials in the swiss cement industry. Journal of Cleaner Production, 2017, 142: 4294-4309. [3] 王开, 傅利平. 京津冀产业碳排放强度变化及驱动因素研究. 中国人口·资源与环境, 2017, 27(10): 115-121. [WANG K, FU L P.Study on the changes in carbon intensity and driving factors of Beijing-Tianjin-Hebei. China Population, Resources and Environment, 2017, 27(10): 115-121.] [4] MOUSAVI B, STEPHEN N, LOPEZ A, et al.Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach. Applied Energy, 2017, 206(8): 804-814. [5] 米国芳, 长青. 能源结构和碳排放约束下中国经济增长“尾效”研究. 干旱区资源与环境, 2017, 31(2): 50-55. [MI G F, CHANG Q.Economic growth "drag" under the energy structure and carbon emission constraint in China. Journal of Arid Land Resources and Environment, 2017, 31(2): 50-55.] [6] WU R, GENG Y, DONG H, et al.Changes of CO2 emissions embodied in Chinese-Japan trade. Journal of Cleaner Production, 2016, 112(1): 4151-4158. [7] 崔盼盼, 张艳平, 张丽君, 等. 中国省域隐含碳排放及其驱动机理时空演变分析. 自然资源学报, 2018, 33(5): 879-892. [CUI P P, ZHANG Y P, ZHANG L J, et al.Spatial and temporal evolution analysis of implicit carbon emissions and driving mechanisms in China's provinces. Journal of Natural Resources, 2018, 33(5): 879-892.] [8] ZURANO CERVELLÓ P, POZO C, MATEO-SANZ J M, et al. Eco-efficiency assessment of EU manufacturing sectors combining input-output tables and data envelopment analysis following production and consumption-based accounting approaches. Journal of Cleaner Production, 2018, 174(10): 1161-1189. [9] 苑清敏, 吴静. 基于投入产出的京津冀产业碳核算及差异研究. 统计与决策, 2018, 34(2): 105-108. [YUAN Q M, WU J.Study on industrial carbon accounting and difference of Beijing-Tianjin-Hebei based on input output method. Statistics & Decision, 2018, 34(2): 105-108.] [10] 赵巧芝, 闫庆友. 基于投入产出的中国行业碳排放及减排效果模拟. 自然资源学报, 2017, 32(9): 1528-1541. [ZHAO Q Z, YAN Q Y.Simulation of industrial carbon emissions and its reduction in China based on input-output model. Journal of Natural Resources, 2017, 32(9): 1528-1541.] [11] 郭守前, 陈吟珊, 马珍珍. 基于复杂网络的产业碳值投入产出分析. 经济与管理, 2016, 30(3): 84-89. [GUO S Q, CHEN Y S, MA Z Z.Industrial carbon value input-output analysis of based on complex network. Economy and Management, 2016, 30(3): 84-89.] [12] ZHAO W, NIU D.Prediction of CO2 emission in China's power generation industry with gauss optimized cuckoo search algorithm and wavelet neural network based on STIRPAT model with ridge regression. Sustainability, 2017, 9(12): 2377-2398. [13] 张德钢, 陆远权. 中国碳排放的空间关联及其解释. 软科学, 2017, 31(4): 15-18. [ZHANG D G, LU Y Q.Study on the spatial correlation and explanation of carbon emission in China. Soft Science, 2017, 31(4): 15-18.] [14] 许静, 周敏, 夏青. 中国省际间产业区域转移的碳排放动态效应及影响机制. 中国地质大学学报: 社会科学版, 2017, 17(2): 74-85. [XU J, ZHOU M, XIA Q.The dynamic effect and mechanism of carbon emissions from inter provincial industrial regional transfer in China. Journal of China University of Geosciences: Social Sciences Edition, 2017, 17(2): 74-85.] [15] KALBAR P P, BIRKVED M, KARMAKAR S, et al.Can carbon footprint serve as proxy of the environmental burden from urban consumption patterns?. Ecological Indicators, 2017, 74(1): 109-118. [16] 李根, 刘家国, 赵金楼. 基于投入产出非线性优化的制造业完全能耗强度情景分析. 中国管理科学, 2016, 24(3): 31-40. [LI G, LIU J G, ZHAO J L.Scenario analysis of complete energy intensity of manufacturing industry in China based on input and output and non-linear optimization. Chinese Journal of Management Science, 2016, 24(3): 31-40.] [17] WIEDMANN T.An input-output virtual laboratory in practice survey of uptake, usage and applications of the first operational IELab. Economic Systems Research, 2017, 16(3): 1-17. [18] HIRAMATSU T, INOUE H, KATO Y.Estimation of interregional input-output table using hybrid algorithm of the RAS method and real-coded genetic algorithm. Transportation Research Part E Logistics & Transportation Review, 2016, 95(1): 385-402. [19] 刘笑瑜, 刘亚清, 欧阳红兵. 基于交叉熵方法的中国基础经济结构实证研究. 经济经纬, 2016, 33(1): 25-29. [LIU X Y, LIU Y Q, OUYANG H B.An empirical study on fundamental economic structure of China based on cross entropy method. Economic Survey, 2016, 33(1): 25-29.] [20] POISSONNIER A.A general weighted least squares approach for the projection of input-output tables. Economic Systems Research, 2017, 5(6): 86-97. [21] 李瑞龙, 周永根, 陈锐, 等. 基于复杂网络的城市间创新关联与空间格局. 系统工程, 2017, 35(10): 105-113. [LI R L, ZHOU Y G, CHEN R, et al.Intercity innovation linkage and spatial pattern based on complex network. Systems Engineering, 2017, 31(2): 50-55.] [22] BENSON A R, GLEICH D F, LESKOVEC J.Higher-order organization of complex networks. Science, 2017, 35(10): 105-113. [23] 卢燕群, 何永芳. 复杂网络视角下企业集群技术创新扩散仿真研究. 中国科技论坛, 2018, (3): 73-80. [LU Y Q, HE Y F.Simulation Research on technology innovation diffusion of enterprise cluster from the perspective of complex network. Forum on Science and Technology in China, 2018, (3): 73-80.] [24] CASTILLO-EGUSKITZA N, RESCIA A J, ONAINDIA M. Urdaibai Biosphere Reserve (Biscay, Spain): Conservation against development?. Science of the Total Environment, 2017, 592(8): 124-133. [25] 尹翀. 产业技术流网络构建与结构效应研究. 科技进步与对策, 2017, 34(16): 62-70. [YIN C.Research on the construction and structure effect of industrial technology flow network. Science & Technology Progress and Policy, 2017, 34(16): 62-70.] [26] XIAO W W, WANG L L, ZHANG Z Y, et al.Identify and analyze key industries and basic economic structures using interregional industry network. Cluster Computing, 2017, (1): 1-11. |