[1] HUANG S L, RAMIREZ C, CONWAY S, et al.Mapping site index and volume increment from forest inventory, Landsat, and ecological variables in Tahoe National Forest, California, USA. Canadian Journal of Forest Research, 2017, 47(1): 113-124. [2] BUEIS T, BRAVO F, PANDO V, et al.Site factors as predictors for Pinus halepensis Mill. productivity in Spanish plantations. Annals of Forest Science, 2017, 74(1): 6. [3] LATTA G, TEMESGEN H, BARRETT T M.Mapping and imputing potential productivity of pacific northwest forests using climate variables. Canadian Journal of Forest Research, 2009, 39(6): 1197-1207. [4] MCKENNEY D W, PEDLAR J H.Spatial models of site index based on climate and soil properties for two boreal tree species in Ontario, Canada. Forest Ecology and Management, 2003, 175(1-3): 497-507. [5] NIGH G D, YING C C, QIAN H.Climate and productivity of major conifer species in the interior of British Columbia, Canada. Forest Science, 2004, 50(5): 659-671. [6] 吴恒, 党坤良, 田相林, 等. 秦岭林区天然次生林与人工林立地质量评价. 林业科学, 2015, 51(4): 78-88. [WU H, DANG K L, TIAN X L, et al.Evaluating site quality for secondary forests and plantation in Qinling mountains. Scientia Silvae Sinicae, 2015, 51(4): 78-88.] [7] LITTKE K M, HARRISON R B, ZABOWSKI D.Determining the effects of biogeoclimatic properties on different site index systems of ouglas-fir in the Coastal Pacific northwest. Forest Science, 2016, 62(5): 503-512. [8] ANTÓN- FERNÁNDEZ C, MOLA-YUDEGO B, DALSGAARD L, et al. Climate- sensitive site index models for Norway. Canadian Journal of Forest Research, 2016, 46(6): 794-803. [9] BEAULIEU J, RAULIER F, PRÉGENT G, et al. Predicting site index from climatic, edaphic, and stand structural properties for seven plantation- grown conifer species in Quebec. Canadian Journal of Forest Research, 2011, 41(4): 682-693. [10] JIANG H Q, RADTKE P J, WEISKITTEL A R, et al.Climate- and soil-based models of site productivity in Eastern US tree species. Canadian Journal of Forest Research, 2015, 45(3): 325-342. [11] FALKOWSKI M J, WULDER M A, WHITE J C, et al.Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery. Progress in Physical Geography, 2009, 33(3): 403-423. [12] PARRESOL B R, SCOTT D A, ZARNOCH S J, et al.Modeling forest site productivity using mapped geospatial attributes within a South Carolina landscape, USA. Forest Ecology and Management, 2017, 406: 196-207. [13] BRAVO-OVIEDO A, ROIG S, BRAVO F, et al.Environmental variability and its relationship to site index in Mediterranean maritine pine. Forest Systems, 2011, 20(1): 50-64. [14] WARING R H, MILNER K S, JOLLY W M, et al.Assessment of site index and forest growth capacity across the Pacific and Inland Northwest U.S.A. with a MODIS satellite-derived vegetation index. Forest Ecology and Management, 2006, 228(1-3): 285-291. [15] WEISKITTEL A R, CROOKSTON N L, RADTKE P J.Linking climate, gross primary productivity, and site index across forests of the Western United States. Canadian Journal of Forest Research, 2011, 41(8): 1710-1721. [16] FARRELLY N, NÍ-DHUBHÁIN Á, NIEUWENHUIS M. Site index of Sitka spruce (Picea sitchensis) in relation to different measures of site quality in Ireland. Canadian Journal of Forest Research, 2011, 41(2): 265-278. [17] HLÁSNY T, TROMBIK J, BOŠEĹA M, et al. Climatic drivers of forest productivity in Central Europe. Agricultural and Forest Meteorology, 2017, 234-235: 258-273. [18] SHARMA R P.Modelling height, height growth and site index from National Forest Inventory Data in Norway. Oslo, Norway: Norwegian University of Life Sciences, 2013. [19] 曾春阳, 唐代生, 唐嘉锴. 森林立地指数的地统计学空间分析. 生态学报, 2010, 30(13): 3465-3471. [ZENG C Y, TANG D S, TANG J K.Spatial pattern of forest ecoystem site index using geostatistical technology. Acta Ecologica Sinica, 2010, 30(13): 3465-3471.] [20] 王海宾, 彭道黎, 范应龙, 等. 基于辅助信息的森林蓄积量空间模拟. 农业机械学报, 2016, 47(6): 283-289. [WANG H B, PENG D L, FAN Y L, et al.Spatial modeling of forest stock volume based on auxiliary information. Transactions of the CSAM, 2016, 47(6): 283-289.] [21] 赵安玖, 陈昆, 郭世刚. 基于不同空间插值模型的川西南山地常绿阔叶林叶面积指数估测. 自然资源学报, 2014, 29(4): 598-609. [ZHAO A J, CHEN K, GUO S G.Estimation LAI of montane evergreen broad-leaved forest in Southwest Sichuan using different spatial prediction models. Journal of Natural Resources, 2014, 29(4): 598-609.] [22] HENGL T, HEUVELINK G B M, ROSSITER D G. About regression- kriging: From equations to case studies. Computers & Geosciences, 2007, 33(10): 1301-1315. [23] 张树梓, 李梅, 张树彬, 等. 塞罕坝华北落叶松人工林天然更新影响因子. 生态学报, 2015, 35(16): 5403-5411. [ZHANG S Z, LI M, ZHANG S B, et al.Factors affecting natural regeneration of Larix principis-rupprechtii plantations in Saihanba of Hebei, China. Acta Ecologica Sinica, 2015, 35(16): 5403-5411.] [24] 段劼, 马履一, 贾黎明, 等. 北京低山地区油松人工林立地指数表的编制及应用. 林业科学, 2009, 45(3): 7-12. [DUAN J, MA L Y, JIA L M, et al.Establishment and application of site index table for Pinus tabulaeformis plantation in the low elevation area of beijing. Scientia Silvae Sinicae, 2009, 45(3): 7-12.] [25] 王冬至, 张冬燕, 蒋凤玲, 等. 塞罕坝华北落叶松人工林地位指数模型. 应用生态学报, 2015, 26(11): 3413-3420. [WANG D Z, ZHANG D Y, JANG F L, et al.A site index model for Larix principis-rupprechtii plantation in Saihanba, North China. Chinese Journal of Applied Ecology, 2015, 26(11): 3413-3420.] [26] WANG T L, WANG G Y, INNES J, et al.Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia- Pacific region. Forest Ecology and Management, 2016, 360: 357-366. [27] 范顺祥, 郑建伟, 魏士凯, 等. 河北省森林草原区主要草本植物功能群适宜分布预测. 草业学报, 2018, 27(3): 24-32. [FAN S X, ZHENG J W, WEI S K, et al.Predicting suitable distribution of dominant herbaceous plant functional groups in a forest-steppe zone of Hebei, China. Acta Prataculturae Sinica, 2018, 27(3): 24-32.] [28] WEI S G, DAI Y J, LIU B Y, et al.A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 2013, 5(2): 212-224. [29] JOHNSON J W.Factors affecting relative weights: The influence of sampling and measurement error. Organizational Research Methods, 2004, 7(3): 283-299. [30] JAMES M L, SCOTT T.Multivariate relative importance: Extending relative weight analysis to multivariate criterion spaces. Journal of Applied Psychology, 2008, 93(2): 329-345. [31] 张冬峰, 石英. 区域气候模式RegCM3对华北地区未来气候变化的数值模拟. 地球物理学报, 2012, 55(9): 2854-2866. [ZHANG D F, SHI Y.Numerical simulation of climate changes over North China by the RegCM3 model. Chinese Journal of Geophysics, 2012, 55(9): 2854-2866.] [32] 汝海丽, 张海东, 焦峰, 等. 黄土丘陵区微地形梯度下草地群落植物与土壤碳、氮、磷化学计量学特征. 自然资源学报, 2016, 31(10): 1752-1763. [RU H L, ZHANG H D, JIAO F, et al.Plant and soil C, N, P stoichiometric characteristics in relation to micro-topography in the hilly Loess Plateau region, China. Journal of Natural Resources, 2016, 31(10): 1752-1763.] [33] 张杰, 李栋梁, 王文. 夏季风期间青藏高原地形对降水的影响. 地理科学, 2008, 28(2): 235-240. [ZHANG J, LI D L, WANG W.Influence of terrain on precipitation in Qinghai-Tibet Plateau during summer monsoon. Scientia Geographica Sinica, 2008, 28(2): 235-240.] [34] 杨昕, 汤国安, 王春, et al.基于DEM的山区气温地形修正模型: 以陕西省耀县为例. 地理科学, 2007, 27(4): 525-530. [YANG X, TANG G A, WANG C, et al.Terrain-revised ground surface temperature model of mountain area based on DEM: A case study in Yaoxian county of Shananxi province. Scientia Geographica Sinica, 2007, 27(4): 525-530.] [35] 邱乐丰, 杨超, 林芬芳, 等. 基于环境辅助变量的拔山茶园土壤肥力空间预测. 应用生态学报, 2010, 21(12): 3099-3104. [QIU L F, YANG C, LIN F F, et al.Spatial pattern of soil fertility in Bashan tea garden: A prediction based on environmental auxiliary variables. Chinese Journal of Applied Ecology, 2010, 21(12): 3099-3104.] [36] 张东秋, 石培礼, 张宪洲. 土壤呼吸主要影响因素的研究进展. 地球科学进展, 2005, 20(7): 778-785. [ZHANG D Q, SHI P L, ZHANG X Z.Some advance in the main factors controlling soil respiration. Advances in Earth Science, 2005, 20(7): 778-785.] [37] 王丹丹, 岳书平, 林芬芳, 等. 东北地区旱地土壤全氮空间变异性对幅度拓展的响应. 土壤学报, 2012, 49(4): 625-635. [WANG D D, YUE S P, LIN F F, et al.Response of spatial variability of soil total nitrogen to expansion of uplands in scale in Northeast China. Acta Pedologica Sinica, 2012, 49(4): 625-635.] |