自然资源学报 ›› 2019, Vol. 34 ›› Issue (5): 1027-1040.doi: 10.31497/zrzyxb.20190510
丁明磊1,2(), 李宇翔3, 赵荣钦2(
), 张战平2, 侯丽朋2, 刘秉涛4, 刘薇5
收稿日期:
2018-12-01
修回日期:
2019-03-14
出版日期:
2019-05-28
发布日期:
2019-05-28
作者简介:
作者简介:丁明磊(1976- ),男,河南开封人,博士研究生,讲师,研究方向为低碳发展、区域与城市可持续发展。E-mail:
基金资助:
Ming-lei DING1,2(), Yu-xiang LI3, Rong-qin ZHAO2(
), Zhan-ping ZHANG2, Li-peng HOU2, Bing-tao LIU4, Wei LIU5
Received:
2018-12-01
Revised:
2019-03-14
Online:
2019-05-28
Published:
2019-05-28
摘要:
开展工业行业碳排放绩效研究,对于落实碳减排承诺、完善碳交易体制、推动低碳产业发展具有重要意义。采用郑州市2013年181家工业企业的基础数据,通过构建碳排放综合绩效指标体系和配额分配模型,开展不同行业的综合绩效评价和配额分配模拟。主要结论如下:(1)不同行业的碳排放强度分布极不均衡且与碳排放总量具有一定的关联性,但关联类型不尽相同。电力、热力生产和供应业的碳排放强度最高(5.4115 t/万元),烟草制品业的碳排放强度最低(0.0046 t/万元)。(2)不同行业单位用地碳排放量、单位劳动力碳排放量差异较大。电力、热力生产和供应业的单位用地碳排放及单位劳动力碳排放明显高于其他行业。(3)碳排放综合绩效表明,电力、热力生产和供应业的碳排放绩效最低,汽车制造业的碳排放绩效最高。(4)不同行业因综合绩效的差异获得与基准年碳排放不同增减比例的配额,其中,电力、热力生产和供应业获得的配额最多,化学纤维制造业获得的配额最少。通过碳配额分配模拟,郑州市整体减排18.206万t,减排比例为5.56%。(5)建议完善行业配额分配方案,并试点实施以碳排放综合绩效评价为基础的行业配额分配,实现资源节约、环境保护和碳减排的协同。
丁明磊, 李宇翔, 赵荣钦, 张战平, 侯丽朋, 刘秉涛, 刘薇. 面向配额分配模拟的工业行业碳排放绩效——以郑州市为例[J]. 自然资源学报, 2019, 34(5): 1027-1040.
Ming-lei DING, Yu-xiang LI, Rong-qin ZHAO, Zhan-ping ZHANG, Li-peng HOU, Bing-tao LIU, Wei LIU. Carbon emission performance of quota allocation simulation-oriented industry: The case study of Zhengzhou[J]. JOURNAL OF NATURAL RESOURCES, 2019, 34(5): 1027-1040.
表1
研究涉及的行业名称及其代码"
行业代码 | 行业名称 | 企业数量/个 | 行业代码 | 行业名称 | 企业数量/个 |
---|---|---|---|---|---|
B06 | 煤炭开采和洗选业 | 2 | C13 | 农副食品加工业 | 7 |
C14 | 食品制造业 | 11 | C15 | 酒、饮料和精制茶制造业 | 7 |
C16 | 烟草制品业 | 1 | C17 | 纺织业 | 3 |
C18 | 纺织服装、服饰业 | 1 | C22 | 造纸和纸制品业 | 13 |
C23 | 印刷和记录媒介复制业 | 3 | C26 | 化学原料和化学制品制造业 | 18 |
C27 | 医药制造业 | 10 | C28 | 化学纤维制造业 | 1 |
C29 | 橡胶和塑料制品业 | 2 | C30 | 非金属矿物制品业 | 64 |
C31 | 黑色金属冶炼和压延加工业 | 7 | C32 | 有色金属冶炼和压延加工业 | 8 |
C33 | 金属制品业 | 3 | C34 | 通用设备制造业 | 3 |
C35 | 专用设备制造业 | 5 | C36 | 汽车制造业 | 5 |
C39 | 计算机、通信和其他电子设备制造业 | 1 | D44 | 电力、热力生产和供应业 | 6 |
表2
碳排放效率指标"
指标 | 公式 | 参数说明 |
---|---|---|
单位用地碳排放 | 单位用地碳排放(CL)为企业碳排放总量(CE)与企业占地面积(S)的比值(t/m2),反映企业用地的碳排放效率 | |
单位劳动力碳排放 | 单位劳动力碳排放(LC)为企业碳排放总量(CE)与企业员工数(L)的比值(t/人),反映企业员工的碳排放效率 | |
碳排放强度 | 碳排放强度(CQ)为企业碳排放总量(CE)与企业总产值(G)的比值(t/万元),用于衡量企业碳排放的经济效率 | |
单位产值耗水量 | 单位产值耗水量(GW)为企业总用水量(TW)与企业总产值(G)的比值(t/万元),用来反映企业的水资源利用效率 | |
废弃物排放强度 | 废弃物排放强度(WQ)为废弃物排放总量(TQ)与企业总产值(G)的比值(t/万元),即单位产值的废弃物排放量 |
表3
郑州市不同工业行业碳配额分配方案"
行业 代码 | 综合 绩效 | 基准年碳 排放/万t | 碳配额 /万t | 比例 /% | 行业 代码 | 综合 绩效 | 基准年碳 排放/万t | 碳配额 /万t | 比例 /% |
---|---|---|---|---|---|---|---|---|---|
B06 | 0.3517 | 0.254 | 0.247 | -2.54 | C28 | 0.3496 | 0.024 | 0.024 | -2.78 |
C13 | 0.4312 | 0.715 | 0.721 | 0.95 | C29 | 0.3540 | 0.125 | 0.122 | -2.27 |
C14 | 0.4725 | 9.680 | 9.852 | 1.77 | C30 | 0.4120 | 68.743 | 69.138 | 0.57 |
C15 | 0.5526 | 2.946 | 3.045 | 3.36 | C31 | 0.3885 | 4.282 | 4.287 | 0.11 |
C16 | 0.7825 | 0.447 | 0.482 | 7.91 | C32 | 0.5052 | 17.151 | 17.566 | 2.42 |
C17 | 0.3591 | 0.559 | 0.549 | -1.70 | C33 | 0.3519 | 0.316 | 0.308 | -2.52 |
C18 | 0.3509 | 0.048 | 0.046 | -2.63 | C34 | 0.3956 | 0.692 | 0.693 | 0.25 |
C22 | 0.3880 | 8.027 | 8.035 | 0.10 | C35 | 0.6026 | 0.399 | 0.416 | 4.35 |
C23 | 0.3592 | 0.039 | 0.038 | -1.68 | C36 | 0.8883 | 1.744 | 1.918 | 10.00 |
C26 | 0.3731 | 9.835 | 9.826 | -0.10 | C39 | 0.3476 | 0.378 | 0.367 | -3.01 |
C27 | 0.3009 | 1.821 | 1.669 | -8.32 | D44 | 0.2862 | 193.320 | 173.988 | -10.00 |
[1] | CHUAI X W, HUANG X J, LAI L, et al.Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environmental Science & Policy, 2013, 25: 50-61. |
[2] | LAI L, HUANG X J, YANG H, et al.Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2016, 2(11): e1601063. |
[3] | ZHAO R Q, HUANG X J, ZHONG T Y, et al.Carbon footprint of different industrial spaces based on energy consumption in China. Journal of Geographical Sciences, 2011, 21(2): 285-300. |
[4] | YI J.Study on carbon emission efficiency of China's industrial industry and analysis of its influencing factors. Low Carbon Economy, 2017, 8: 20-30. |
[5] | LU Q L, YANG H, HUANG X J, et al.Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu province, China. Energy, 2015, 82: 414-425. |
[6] | WANG Q W, HANG Y, ZHOU P, et al.Decoupling and attribution analysis of industrial carbon emissions in Taiwan. Energy, 2016, 113: 728-738. |
[7] | CHENG Z H, LI L S, LIU J, et al.Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution. Renewable and Sustainable Energy Reviews, 2018, 94: 330-339. |
[8] | 杨文娟, 赵荣钦, 张战平, 等. 河南省不同产业碳水足迹效率研究. 自然资源学报, 2019, 34(1): 92-103. |
[YANG W J, ZHAO R Q, ZHANG Z P, et al.Industrial carbon and water footprint efficiency of Henan province based on input-output analysis. Journal of Natural Resources, 2019, 34(1): 92-103.] | |
[9] | 侯丽朋. 郑州市典型产业碳排放综合绩效评估及碳配额分配研究. 郑州: 华北水利水电大学, 2017. |
[HOU L P.Study on carbon emissions comprehensive performance evaluation and carbon quote allocation of typical industries in Zhengzhou. Zhengzhou: North China University of Water Resources and Electric Power, 2017.] | |
[10] | 刘薇, 丁明磊, 赵荣钦, 等. 基于碳排放视角的工业行业全要素生产率研究. 资源开发与市场, 2017, 33(3): 322-326. |
[LIU W, DING M L, ZHAO R Q, et al.Research on total factor productivity of industries based on carbon emission. Resource Development & Market, 2017, 33(3): 322-326.] | |
[11] | 吕可文, 苗长虹, 尚文英. 工业能源消耗碳排放行业差异研究: 以河南省为例. 经济地理, 2012, 32(12): 15-20. |
[LYU K W, MIAO C H, SHANG W Y.Sectoral difference in carbon emission of industrial energy consumption: A case study of Henan province. Economic Geography, 2012, 32(12): 15-20.] | |
[12] | ZHANG M, HUANG X J.Effects of industrial restructuring on carbon reduction: An analysis of Jiangsu province, China. Energy, 2012, 44: 515-526. |
[13] | 赵巧芝, 闫庆友. 基于投入产出的中国行业碳排放及减排效果模拟. 自然资源学报, 2017, 32(9): 1528-1541. |
[ZHAO Q Z, YAN Q Y.Simulation of industrial carbon emissions and its reduction in China based on input-output model. Journal of Natural Resources, 2017, 32(9): 1528-1541.] | |
[14] | XIAN Y J, WANG K, SHI X P, et al.Carbon emissions intensity reduction target for China's power industry: An efficiency and productivity perspective. Journal of Cleaner Production, 2018, 197: 1022-1034. |
[15] | LIN B Q, LIU K.Using LMDI to analyze the decoupling of carbon dioxide emissions from China's heavy industry. Sustainability, 2017, 9(7): 1198. |
[16] | FAN M T, SHAO S, YANG L L.Combining global Malmquist-luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China). Energy Policy, 2015, 79: 189-201. |
[17] | OUYANG X L, LIN B Q.An analysis of the driving forces of energy-related carbon dioxide emissions in China's industrial sector. Renewable and Sustainable Energy Reviews, 2015, 45: 838-849. |
[18] | 孙艳伟, 李加林, 李伟芳, 等. 海岛城市碳排放测度及其影响因素分析: 以浙江省舟山市为例. 地理研究, 2018, 37(5): 1023-1033. |
[SUN Y W, LI J L, LI W F, et al.Estimating the carbon emissions and influencing factors of island city: A case study in Zhoushan Islands, Zhejiang province. Geographical Research, 2018, 37(5): 1023-1033.] | |
[19] | HUANG W L, MA D, CHEN W Y.Connecting water and energy: Assessing the impacts of carbon and water constraints on China's power sector. Applied Energy, 2017, 185: 1497-1505. |
[20] | 王俊岭, 张新社. 中国钢铁工业经济增长、能源消耗与碳排放脱钩分析. 河北经贸大学学报, 2017, 38(4): 77-82. |
[WANG J L, ZHANG X S.The decoupling analysis on economic growth, energy consumption and carbon emissions of China's iron and steel industry. Journal of Hebei University of Economics and Trade, 2017, 38(4): 77-82.] | |
[21] | GAO T M, SHEN L, SHEN M, et al.Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020. Renewable and Sustainable Energy Reviews, 2017, 74: 522-537. |
[22] | 王帆, 倪娟. 企业碳排放影响因素研究: 基于浙江企业的调研分析. 商业经济与管理, 2016, (1): 71-80. |
[WANG F, NI J.Study on the influencing factors of enterprises carbon emission: An empirical analysis of Zhejiang enterprises. Journal of Business Economics, 2016, (1): 71-80.] | |
[23] | 谭德明, 何红渠. 基于资源价值流分析视角的企业碳绩效评价模型构建. 湖南社会科学, 2016, (5): 115-119. |
[TAN D M, HE H Q.Establishment of enterprise carbon performance evaluation model based on resource value flow analysis. Hunan Social Science, 2016, (5): 115-119.] | |
[24] | 吴明, 姜国强, 贾冯睿, 等. 基于物质流和生命周期分析的石油行业碳排放. 资源科学, 2018, 40(6): 1287-1296. |
[WU M, JIANG G Q, JIA F R, et al.Carbon emissions from the petroleum industry based on the analysis of material flow and life cycle. Resources Science, 2018, 40(6): 1287-1296.] | |
[25] | 刘英, 赵荣钦, 张战平, 等. 城市开发区工业企业的碳排放效率比较: 以南京江宁经济技术开发区为例. 热带地理, 2018, 38(1): 103-111. |
[LIU Y, ZHAO R Q, ZHANG Z P, et al.Carbon emission efficiency of different industrial companies of urban industrial zone: A case study of Jiangning Economic and Technological Development Zone, Nanjing. Tropical Geography, 2018, 38(1): 103-111.] | |
[26] | SUBRAMANIAM N, WAHYUNI D, COOPER B J, et al.Integration of carbon risks and opportunities in enterprise risk management systems: Evidence from Australian firms. Journal of Cleaner Production, 2015, 96: 407-417. |
[27] | 白世秀, 王宇, 张德刚. 生态效率对公司市场价值的影响研究: 基于世界500强企业碳排放数据. 生态经济, 2018, 34(7): 39-43. |
[BAI S X, WANG Y, ZHANG D G.Impact of corporate eco-efficiency on its market value: Empirical analysis from carbon emission data of global 500 companies. Ecological Economy, 2018, 34(7): 39-43.] | |
[28] | FANG G C, LIU M H, TIAN L X, et al.Optimization analysis of carbon emission rights allocation based on energy justice: The case of China. Journal of Cleaner Production, 2018, 202: 748-758. |
[29] | KONG Y C, ZHAO T, YUAN R, et al.Allocation of carbon emission quotas in Chinese provinces based on equality and efficiency principles. Journal of Cleaner Production, 2019, 211: 222-232. |
[30] | 周迪, 郑楚鹏, 华诗润, 等. 公平与效率协调视角下的中国碳减排潜力与路径. 自然资源学报, 2019, 34(1): 80-91. |
[ZHOU D, ZHENG C P, HUA S R, et al.The potentialities and paths of China's carbon emission reduction based on the coordination of fairness and efficiency. Journal of Natural Resources, 2019, 34(1): 80-91.] | |
[31] | WANG X W, CAI Y P, XU Y, et al.Optimal strategies for carbon reduction at dual levels in China based on a hybrid nonlinear grey-prediction and quota-allocation model. Journal of Cleaner Production, 2014, 83: 185-193. |
[32] | YANG K J, LEI Y L, CHEN W M, et al.Carbon dioxide emission reduction quota allocation study on Chinese provinces based on two-stage Shapley information entropy model. Natural Hazards, 2017, 91(1): 321-335. |
[33] | 方恺, 张琦峰, 叶瑞克, 等. 巴黎协定生效下的中国省际碳排放权分配研究. 环境科学学报, 2018, 38(3): 1224-1234. |
[FANG K, ZHANG Q F, YE R K, et al.Allocating China's carbon emission allowance to the provincial quotas in the context of the Paris Agreement. Acta Scientiae Circumstantiae, 2018, 38(3): 1224-1234.] | |
[34] | ZHANG Y J, HAO J F.Carbon emission quota allocation among China's industrial sectors based on the equity and efficiency principles. Annals of Operations Research, 2016, 255: 117-140. |
[35] | DONG F, HAN Y, DAI Y J, et al.How carbon emission quotas can be allocated fairly and efficiently among different industrial sectors: The case of Chinese industry. Polish Journal of Environmental Studies, 2018, 27(6): 2883-2891. |
[36] | WANG C, WANG Z H, KE R Y, et al.Integrated impact of the carbon quota constraints on enterprises within supply chain: Direct cost and indirect cost. Renewable and Sustainable Energy Reviews, 2018, 92: 774-783. |
[37] | 令狐大智, 叶飞. 基于历史排放参照的碳配额分配机制研究. 中国管理科学, 2015, 23(6): 65-72. |
[LINGHU D Z, YE F.Quota allocation mechanism based on historical emission of carbon. Chinses Journal of Management Science, 2015, 23(6): 65-72.] | |
[38] | 赵荣钦. 城市系统碳循环及土地调控研究. 南京: 南京大学出版社, 2012: 87-89. |
[ZHAO R Q.Carbon Cycle of Urban System and Its Regulation through Land Use Control. Nanjing: Nanjing University Press, 2012: 87-89.] | |
[39] | 杨力, 刘程程, 宋利, 等. 基于熵权法的煤矿应急救援能力评价. 中国软科学, 2013, 28(11): 185-192. |
[YANG L, LIU C C, SONG L, et al.Evaluation of coal mine emergency rescue capability based on entropy weight method. China Soft Science, 2013, 28(11): 185-192.] |
[1] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价——基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
[2] | 徐维祥, 徐志雄, 刘程军. 黄河流域地级城市土地集约利用效率与生态福利绩效的耦合性分析[J]. 自然资源学报, 2021, 36(1): 114-130. |
[3] | 王帅, 赵荣钦, 杨青林, 肖连刚, 杨文娟, 余娇, 朱瑞明, 揣小伟, 焦士兴. 碳排放约束下的农业生产效率及其空间格局——基于河南省65个村庄的调查[J]. 自然资源学报, 2020, 35(9): 2092-2104. |
[4] | 崔喆, 沈丽珍, 刘子慎, 汪侠. 基于公司行业结构的哈尔滨跨区域联系网络分析[J]. 自然资源学报, 2020, 35(7): 1672-1685. |
[5] | 吴景辉, 张戈, 王耕. 能源富集区贸易隐含碳及隐含SO2排放转移——以山西省为例[J]. 自然资源学报, 2020, 35(6): 1445-1459. |
[6] | 宋璐璐, 陈伟强, 代敏. 中国汽车、船舶和家电中钢铁的存量与流量[J]. 自然资源学报, 2020, 35(4): 895-907. |
[7] | 田华征, 马丽. 中国工业碳排放强度变化的结构因素解析[J]. 自然资源学报, 2020, 35(3): 639-653. |
[8] | 沈杨, 汪聪聪, 高超, 丁镭. 基于城市化的浙江省湾区经济带碳排放时空分布特征及影响因素分析[J]. 自然资源学报, 2020, 35(2): 329-342. |
[9] | 王康, 李志学, 周嘉. 环境规制对碳排放时空格局演变的作用路径研究——基于东北三省地级市实证分析[J]. 自然资源学报, 2020, 35(2): 343-357. |
[10] | 黄天能, 李江风, 许进龙, 廖晓莉. 资源枯竭城市转型发展绩效评价及障碍因子诊断——以湖北大冶为例[J]. 自然资源学报, 2019, 34(7): 1417-1428. |
[11] | 龙亮军. 综合福利视角下中国生态文明建设绩效评价及国际比较[J]. 自然资源学报, 2019, 34(6): 1259-1272. |
[12] | 柳君波, 高俊莲, 徐向阳. 中国煤炭供应行业格局优化及排放[J]. 自然资源学报, 2019, 34(3): 473-486. |
[13] | 肖黎明, 张仙鹏. 强可持续理念下绿色创新效率与生态福利绩效耦合协调的时空特征[J]. 自然资源学报, 2019, 34(2): 312-324. |
[14] | 周迪, 王雪芹. 中国碳排放效率与产业结构升级的耦合度及耦合路径[J]. 自然资源学报, 2019, 34(11): 2305-2316. |
[15] | 崔盼盼, 张艳平, 张丽君, 孙莹莹, 郑智成, 王伟, 徐晓霞. 中国省域隐含碳排放及其驱动机理时空演变分析[J]. 自然资源学报, 2018, 33(5): 879-892. |
|