自然资源学报 ›› 2019, Vol. 34 ›› Issue (4): 707-717.doi: 10.31497/zrzyxb.20190403

• 资源利用与管理 • 上一篇    下一篇

OBIA与RF结合的龙口市土地利用信息提取方法

王瑷玲(), 张校千, 苏晨晨, 于新洋   

  1. 山东农业大学资源与环境学院,泰安 271018
  • 收稿日期:2018-08-22 修回日期:2019-01-17 出版日期:2019-04-20 发布日期:2019-04-20
  • 作者简介:

    作者简介:王瑷玲(1972- ),女,山东临沂人,博士,教授,研究方向为土地利用与评价。E-mail: ailingwang@sdau.edu.cn

  • 基金资助:
    山东省重点研发计划项目(2017CXGC0308);山东省博士后创新项目(222016)

The extraction approach of land use information combining OBIA with RF in Longkou city

WANG Ai-ling(), ZHANG Xiao-qian, SU Chen-chen, YU Xin-yang   

  1. College of Resources and Environment, Shandong Agricultural University, Taian 271018, Shandong, China
  • Received:2018-08-22 Revised:2019-01-17 Online:2019-04-20 Published:2019-04-20

摘要:

为提高中分辨率遥感影像解译精度,本文提出面向对象影像分析(Object Based Image Analysis,OBIA)与随机森林(Random Forest,RF)结合的土地利用信息提取方法。采用Landsat 8 OLI影像,针对不同地物特点,阈值分割和多尺度分割结合创建影像对象,规则集和分类器协同分类,基于Relief F算法分别对光谱特征、纹理特征及所有特征降维筛选特征子集,并与全部特征一起应用RF建模,对龙口市进行土地利用信息提取与比较。结果表明:OBIA与RF结合提取土地利用信息,基于Relief F算法筛选纹理特征,保留完整光谱、几何、空间关系特征构建RF模型,建模错分率为0.0958,分类总体精度和Kappa系数分别为89.37%和0.872,取得较理想结果。该方法可应用于中分辨率遥感影像土地利用信息提取。

关键词: 土地利用信息, 提取方法, 面向对象, Relief F降维, 随机森林, 龙口市

Abstract:

In order to improve the interpretation precision of the medium resolution satellite image, this paper proposed a new extraction approach of land use information combining Object Based Image Analysis (OBIA) with Random Forest (RF). Using the Landsat 8 OLI image and according to the features of all kinds of ground objects, the image objects were created combined with the multi-threshold and multi-resolution segmentation method, and the rule set and classifier were collaboratively used in the image classification. The Relief F algorithm was used to dimensionally reduce the spectral, texture and all feature variables, and to select 3 feature subsets. Then the RF model was conducted with the 3 feature subsets and all feature subset to build 4 models. The 4 models were applied to extract land use information in Longkou city, and the results were compared. The result indicated that the OOB (Out of Bag) misclassification, classification accuracy and Kappa index were 0.0958, 89.37% and 0.872 respectively with the land use information extraction approach combining OBIA with RF, dimension reduction based on the Relief F algorithm only for texture features. This retained the complete spectral, geometric and spatial features, which has a higher accuracy. The approach can be applied to the extraction of land use information with the medium resolution satellite image.

Key words: land use information, the extraction approach, object-based, Relief F algorithm dimensionally reduced, Random Forest, Longkou city